मराठी

∫ X 2 Tan − 1 X 1 + X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int \left( \frac{x^2 \tan^{- 1} x}{1 + x^2} \right)dx\]
\[ = \int \left( \frac{x^2 + 1 - 1}{x^2 + 1} \right) \tan^{- 1} \text{ x dx }\]
\[ = \int \left( 1 - \frac{1}{x^2 + 1} \right) \tan^{- 1}\text{  x dx }\]
\[ = \int 1_{II} . \tan^{- 1}_I \text{ x dx } - \int \frac{\tan^{- 1} x}{x^2 + 1} \text{ dx}\]


\[ = \left[ \tan^{- 1} x\int1\text{ dx }- \int\left\{ \frac{d}{dx}\left( \tan^{- 1} x \right)\int1 \text{ dx } \right\} \text{ dx }\right] - \int \frac{\tan^{- 1} x}{x^2 + 1}dx\]
\[ = t\left[ {an}^{- 1} x \times x - \int\frac{x}{1 + x^2}dx \right] - \int\frac{\tan^{- 1} x}{x^2 + 1}dx\]
`  " Putting x"^2" + 1 = t in the first integral and tan"^{- 1}" x = p in the second integral " `
\[ \Rightarrow \text{ 2x dx }= dt \text{ and }\frac{1}{1 + x^2}dx = dp\]
\[ \Rightarrow \text{ x dx } = \frac{dt}{2} \text{ and }\frac{1}{1 + x^2}dx = dp\]
\[ \therefore I = \tan^{- 1} x . x - \frac{1}{2}\int \frac{dt}{t} - \int p . dp\]
\[ = x \tan^{- 1} x - \frac{1}{2}\text{ ln} \left| t \right| - \frac{p^2}{2} + C\]
\[ = x \tan^{- 1} x - \frac{1}{2}\text{ ln }\left| 1 + x^2 \right| - \frac{\left( \tan^{- 1} x \right)^2}{2} + C \left[ \because t = x^2 + 1 \text{ and } p = \tan^{- 1} x \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 40 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×