मराठी

∫ Cos − 1 ( 4 X 3 − 3 X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]
बेरीज

उत्तर

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right)\text{ dx }\]

\[\text{ Let x } = \cos \theta \]

\[ \Rightarrow \theta = \cos^{- 1} x\]

\[\text{and}\ dx = - \sin \text{ θ  dθ }\]

\[ \therefore \int \cos^{- 1} \left( 4 x^3 - 3x \right)dx = \int \cos^{- 1} \left( 4 \cos^3 \theta - 3 \cos \theta \right) . \left( - \sin \theta \right)d\theta\]

\[ = \int \cos^{- 1} \left( \text{ cos 3 }\theta \right) . \left( - \sin \theta \right)d\theta \left( \because \text{ cos } \text{ 3 θ }= 4 \cos^3 \theta - 3 \cos \theta \right)\]

\[ = - 3 \int \theta_I \sin_{II} \text{ θ  dθ }\]

\[ = \theta\int\sin \text{ θ  dθ } - \int\left\{ \frac{d}{d\theta}\left( \theta \right)\int\sin \text{ θ  dθ }\right\}d\theta\]

\[ = 3 \left[ \theta \left( - \cos \theta \right) - \int1 . \left( - \cos \theta \right)d\theta \right]\]

\[ = 3\theta \cos \theta - 3 \sin \theta + C \]

\[ = 3 \cos^{- 1} x . x - 3\sqrt{1 - x^2} + C \left( \because x = \cos \theta \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 41 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int \tan^3 x\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int \log_{10} x\ dx\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×