मराठी

∫ 1 4 Cos X − 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I} = \int \frac{1}{4 \cos x - 1}dx\]
\[\text{ Putting  cos x }= \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \Rightarrow I = \int \frac{1}{4\left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) - 1}dx\]
\[ = \int \frac{1}{\frac{4\left( 1 - \tan^2 \frac{x}{2} \right) - \left( 1 + \tan^2 \frac{x}{2} \right)}{\left( 1 + \tan^2 \frac{x}{2} \right)}}\]
\[ = \int \frac{\left( 1 + \tan^2 \frac{x}{2} \right)dx}{4 - 4 \tan^2 \left( \frac{x}{2} \right) - 1 - \tan^2 \left( \frac{x}{2} \right)}\]
\[ = \int \frac{\sec^2 \left( \frac{x}{2} \right) dx}{3 - 5 \tan^2 \left( \frac{x}{2} \right)}\]
\[\text{ Let tan } \left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \left( \frac{x}{2} \right)\text{ dx }= dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right)dx = 2dt\]
\[ \therefore I = 2 \int \frac{dt}{3 - 5 t^2}\]
\[ = \frac{2}{5} \int \frac{dt}{\frac{3}{5} - t^2}\]
\[ = \frac{2}{5} \int \frac{dt}{\left( \frac{\sqrt{3}}{\sqrt{5}} \right)^2 - t^2}\]
\[ = \frac{2}{5} \times \frac{\sqrt{5}}{2\sqrt{3}}\text{ In }\left| \frac{\frac{\sqrt{3}}{\sqrt{5}} + t}{\frac{\sqrt{3}}{\sqrt{5}} - t} \right| + C\]
\[ = \frac{1}{\sqrt{15}}\text{ ln } \left| \frac{\sqrt{3} + \sqrt{5} t}{\sqrt{3} - \sqrt{5} t} \right| + C\]
\[ = \frac{1}{\sqrt{15}}\text{  ln }\left| \frac{\sqrt{3} + \sqrt{5} \tan \left( \frac{x}{2} \right)}{\sqrt{3} - \sqrt{5} \tan \left( \frac{x}{2} \right)} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.23 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.23 | Q 4 | पृष्ठ ११७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int \cot^6 x \text{ dx }\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×