हिंदी

∫ 1 4 Cos X − 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]
योग

उत्तर

\[\text{ Let I} = \int \frac{1}{4 \cos x - 1}dx\]
\[\text{ Putting  cos x }= \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \Rightarrow I = \int \frac{1}{4\left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) - 1}dx\]
\[ = \int \frac{1}{\frac{4\left( 1 - \tan^2 \frac{x}{2} \right) - \left( 1 + \tan^2 \frac{x}{2} \right)}{\left( 1 + \tan^2 \frac{x}{2} \right)}}\]
\[ = \int \frac{\left( 1 + \tan^2 \frac{x}{2} \right)dx}{4 - 4 \tan^2 \left( \frac{x}{2} \right) - 1 - \tan^2 \left( \frac{x}{2} \right)}\]
\[ = \int \frac{\sec^2 \left( \frac{x}{2} \right) dx}{3 - 5 \tan^2 \left( \frac{x}{2} \right)}\]
\[\text{ Let tan } \left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \left( \frac{x}{2} \right)\text{ dx }= dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right)dx = 2dt\]
\[ \therefore I = 2 \int \frac{dt}{3 - 5 t^2}\]
\[ = \frac{2}{5} \int \frac{dt}{\frac{3}{5} - t^2}\]
\[ = \frac{2}{5} \int \frac{dt}{\left( \frac{\sqrt{3}}{\sqrt{5}} \right)^2 - t^2}\]
\[ = \frac{2}{5} \times \frac{\sqrt{5}}{2\sqrt{3}}\text{ In }\left| \frac{\frac{\sqrt{3}}{\sqrt{5}} + t}{\frac{\sqrt{3}}{\sqrt{5}} - t} \right| + C\]
\[ = \frac{1}{\sqrt{15}}\text{ ln } \left| \frac{\sqrt{3} + \sqrt{5} t}{\sqrt{3} - \sqrt{5} t} \right| + C\]
\[ = \frac{1}{\sqrt{15}}\text{  ln }\left| \frac{\sqrt{3} + \sqrt{5} \tan \left( \frac{x}{2} \right)}{\sqrt{3} - \sqrt{5} \tan \left( \frac{x}{2} \right)} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.23 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.23 | Q 4 | पृष्ठ ११७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int \sec^6 x\ dx\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×