हिंदी

∫ 1 1 − Sin X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]
योग

उत्तर

\[\int \frac{dx}{1 - \sin\left( \frac{x}{2} \right)}\]

\[ = \int\frac{\left( 1 + \sin \frac{x}{2} \right)}{\left( 1 - \sin \frac{x}{2} \right) \left( 1 + \sin \frac{x}{2} \right)} dx\]

\[ = \int\left( \frac{1 + \sin \frac{x}{2}}{1 - \sin^2 \frac{x}{2}} \right)dx\]

\[ = \int\left( \frac{1 + \sin\frac{x}{2}}{\cos^2 \frac{x}{2}} \right) dx\]

\[ = \int\left( \sec^2 \frac{x}{2} + \sec \frac{x}{2} \text{tan }\frac{x}{2} \right)dx\]

\[ = \frac{\tan \left( \frac{x}{2} \right)}{\frac{1}{2}} + \frac{\sec \left( \frac{x}{2} \right)}{\frac{1}{2}} + C\]

\[ = 2 \left( \tan \frac{x}{2} + \sec \frac{x}{2} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.03 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.03 | Q 12 | पृष्ठ २३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


` ∫  tan^5 x   sec ^4 x   dx `

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×