हिंदी

∫ 1 Sin 4 X + Cos 4 X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]

योग

उत्तर

\[\text{We have}, \]
\[I = \int\frac{dx}{\sin^4 x + \cos^4 x}\]

Dividing numerator and denominator by cos4x

\[I = \int\frac{\sec^4 \text{ x dx}}{\tan^4 x + 1}\]

\[ = \int\frac{\sec^2 x \sec^2 \text{ x dx}}{\tan^4 x + 1}\]

\[ = \int\frac{\left( 1 + \tan^2 x \right) \sec^2 \text{ x dx}}{\tan^4 x + 1}\]

\[\text{ Putting tan x = t}\]

\[ \Rightarrow \sec^2 \text{ x dx = dt}\]

\[ \therefore I = \int\frac{\left( 1 + t^2 \right) dt}{t^4 + 1}\]

\[ = \int\frac{\left( \frac{1}{t^2} + 1 \right) dt}{t^2 + \frac{1}{t^2}}\]

\[ = \int\frac{\left( 1 + \frac{1}{t^2} \right)}{\left( t - \frac{1}{t} \right)^2 + 2}dt\]

\[\text{ Putting t  }- \frac{1}{t} = p\]

\[ \Rightarrow \left( 1 + \frac{1}{t^2} \right)dt = dp\]

\[ \therefore I = \int\frac{1}{p^2 + \left( \sqrt{2} \right)^2}dp\]

\[ = \frac{1}{\sqrt{2}} \text{ tan}^{- 1} \left( \frac{p}{\sqrt{2}} \right) + C\]

\[ = \frac{1}{\sqrt{2}} \text{ tan}^{- 1} \left( \frac{t - \frac{1}{t}}{\sqrt{2}} \right) + C\]

\[ = \frac{1}{\sqrt{2}} \text{ tan}^{- 1} \left( \frac{t^2 - 1}{\sqrt{2} \text{ t }} \right) + C\]

\[ = \frac{1}{\sqrt{2}} \text{ tan}^{- 1} \left( \frac{\tan^2 x - 1}{\sqrt{2} \tan x} \right) + C\]

\[ = \frac{1}{\sqrt{2}} \text{ tan}^{- 1} \left( - \sqrt{2} \times \frac{1 - \tan^2 x}{2 \tan x} \right) + C\]

\[ = \frac{1}{\sqrt{2}} \text{ tan}^{- 1} \left( \frac{- \sqrt{2}}{\tan 2x} \right) + C\]

\[ = \frac{1}{\sqrt{2}} \text{ tan}^{- 1} \left( - \sqrt{2} \cot 2x \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 68 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int x \cos x\ dx\]

\[\int x^2 \text{ cos x dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int \tan^3 x\ dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int \tan^{- 1} \sqrt{x}\ dx\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×