Advertisements
Advertisements
प्रश्न
\[\int\text{ cos x cos 2x cos 3x dx}\]
योग
उत्तर
\[\int\text{ cos x . cos 2x . cos 3x dx}\]
\[ \Rightarrow \frac{1}{2}\int\left[ 2 \cos 2x \cdot \cos x \right] \text{ cos 3x dx}\]
\[ \Rightarrow \frac{1}{2}\int\left[ \text{ cos } \left( 2x + x \right) + \text{ cos } \left( 2x - x \right) \right] \text{ cos 3x dx} ..............\left[ \because 2\text{ cos }A\text{ cos B }= \cos \left( A + B \right) + \text{ cos }\left( A - B \right) \right]\]
\[ \Rightarrow \frac{1}{2}\int\left( \cos3x + \cos x \right) \text{ cos 3x dx }\]
\[ \Rightarrow \frac{1}{2}\int \text{ cos }^2 \text{ 3x dx} + \frac{1}{2}\int\text{ cos } 3x \cdot \text{ cos x dx}\]
\[ \Rightarrow \frac{1}{2}\int\left( \frac{1 + \text{ cos }6x}{2} \right)dx + \frac{1}{4}\int2 \text{ cos 3x} \cdot \text{ cos x dx} ...................\left[ \because \cos 2x = \cos^2 x - 1 \right]\]
\[ \Rightarrow \frac{1}{4}\left[ x + \frac{\sin 6x}{6} \right] + \frac{1}{4}\int\left( \cos 4x + \cos 2x \right)dx\]
\[ \Rightarrow \frac{1}{4}\left[ x + \frac{\sin 6x}{6} \right] + \frac{1}{4}\left[ \frac{\sin 4x}{4} + \frac{\sin 2x}{2} \right] + C\]
\[ \Rightarrow \frac{x}{4} + \frac{\sin 6x}{24} + \frac{\sin 4x}{16} + \frac{\sin 2x}{8} + C\]
\[ \Rightarrow \frac{1}{2}\int\left[ 2 \cos 2x \cdot \cos x \right] \text{ cos 3x dx}\]
\[ \Rightarrow \frac{1}{2}\int\left[ \text{ cos } \left( 2x + x \right) + \text{ cos } \left( 2x - x \right) \right] \text{ cos 3x dx} ..............\left[ \because 2\text{ cos }A\text{ cos B }= \cos \left( A + B \right) + \text{ cos }\left( A - B \right) \right]\]
\[ \Rightarrow \frac{1}{2}\int\left( \cos3x + \cos x \right) \text{ cos 3x dx }\]
\[ \Rightarrow \frac{1}{2}\int \text{ cos }^2 \text{ 3x dx} + \frac{1}{2}\int\text{ cos } 3x \cdot \text{ cos x dx}\]
\[ \Rightarrow \frac{1}{2}\int\left( \frac{1 + \text{ cos }6x}{2} \right)dx + \frac{1}{4}\int2 \text{ cos 3x} \cdot \text{ cos x dx} ...................\left[ \because \cos 2x = \cos^2 x - 1 \right]\]
\[ \Rightarrow \frac{1}{4}\left[ x + \frac{\sin 6x}{6} \right] + \frac{1}{4}\int\left( \cos 4x + \cos 2x \right)dx\]
\[ \Rightarrow \frac{1}{4}\left[ x + \frac{\sin 6x}{6} \right] + \frac{1}{4}\left[ \frac{\sin 4x}{4} + \frac{\sin 2x}{2} \right] + C\]
\[ \Rightarrow \frac{x}{4} + \frac{\sin 6x}{24} + \frac{\sin 4x}{16} + \frac{\sin 2x}{8} + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]
\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
\[\int\frac{1}{1 + \cos 2x} dx\]
\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]
\[\int\left( x + 2 \right) \sqrt{3x + 5} \text{dx} \]
`∫ cos ^4 2x dx `
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]
\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]
\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]
\[\int\frac{1}{x^2 + 6x + 13} dx\]
\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]
\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
\[\int x \cos^2 x\ dx\]
\[\int2 x^3 e^{x^2} dx\]
\[\int\left( x + 1 \right) \text{ log x dx }\]
\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]
\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]
\[\int\frac{x + 1}{x^2 + 4x + 5} \text{ dx}\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int\sqrt{x^2 - a^2} \text{ dx}\]
\[\int \sin^{- 1} \sqrt{x}\ dx\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx}\]
\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]
\[\int\frac{x}{x^3 - 1} \text{ dx}\]
\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]