हिंदी

∫ √ 1 − √ X 1 + √ X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]
योग

उत्तर

\[\text{We have}, \]

\[I = \int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} dx\]

\[\text{ Putting }\sqrt{x} = \cos\theta\]

\[ \Rightarrow x = \cos^2 \theta\]

\[ \Rightarrow dx = - 2 \cos\theta \sin\text{ θ  dθ }\]

\[ \Rightarrow dx = - \text{ sin}\left( 2\theta \right) \text{  dθ }\]

\[ \therefore I = \int\sqrt{\frac{1 - \cos\theta}{1 + \cos\theta}} \left( - \sin 2\theta \right) d\theta\]

\[ = \int\sqrt{\frac{2 \sin^2 \frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}}} \left( - 2 \sin\theta \cos\theta \right) d\theta\]

\[ = \int\left( \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}} \right) \left( - 2 \times 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\cos\theta \right) \text{   dθ }\]

\[ = - 4\int \sin^2 \frac{\theta}{2} \times \cos\text{ θ  dθ }\]

\[ = - 4\int\left( \frac{1 - \cos\theta}{2} \right) \cos\text{ θ  dθ }\]

\[ = - 2\int\left( \cos\theta - \cos^2 \theta \right) d\theta\]

\[ = - 2\int\left\{ \cos\theta - \left( \frac{1 + \cos 2\theta}{2} \right) \right\}d\theta\]

\[ = - 2\int\cos \text{ θ  dθ } + \int\left( 1 + \cos 2\theta \right) d\theta\]

\[ = - 2\sin \theta + \theta + \frac{\sin 2\theta}{2} + C\]

\[ = - 2 \sqrt{1 - \cos^2 \theta} + \theta + \frac{2 \sin\theta \cos\theta}{2} + C\]

\[ = - 2 \sqrt{1 - \cos^2 \theta} + \theta + \sin\theta \cos\theta + C\]

\[ = - 2\sqrt{1 - x} + \cos^{- 1} \sqrt{x} + \sqrt{1 - x}\sqrt{x} + C\]

\[ = - 2\sqrt{1 - x} + \cos^{- 1} \sqrt{x} + \sqrt{x}\sqrt{1 - x} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 127 | पृष्ठ २०५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


`  ∫  sin 4x cos  7x  dx  `

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int \cot^6 x \text{ dx }\]

\[\int \sin^5 x \text{ dx }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int\cos\sqrt{x}\ dx\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int \cot^4 x\ dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int \log_{10} x\ dx\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×