हिंदी

∫ 6 X + 5 √ 6 + X − 2 X 2 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]
योग

उत्तर

\[\int\frac{\left( 6x + 5 \right) dx}{\sqrt{6 + x - 2 x^2}}\]
\[\text{ Let  6x + 5 = A}\frac{d}{dx}\left( 6 + x - 2 x^2 \right) + B\]
\[ \Rightarrow 6x + 5 = A \left( - 4x + 1 \right) + B\]
\[ \Rightarrow 6x + 5 = - 4A \text{ x }+ \left( A + B \right)\]
\[\text{Equating coefficients of like terms}\]
\[ - 4A = 6\]
\[ \Rightarrow A = - \frac{3}{2}\]
\[ \text{ and}\ A + B = 5\]
\[ \Rightarrow - \frac{3}{2} + B = 5\]
\[ \Rightarrow B = 5 + \frac{3}{2}\]
\[ \Rightarrow B = \frac{13}{2}\]
\[\text{ Then, 6x + 5 }= - \frac{3}{2} \left( - 4x + 1 \right) + \frac{13}{2}\]
\[ \therefore \int\frac{\left( 6x + 5 \right)}{\sqrt{6 + x - 2 x^2}}\text{ dx } = \int\left( \frac{\frac{- 3}{2}\left( - 4x + 1 \right) + \frac{13}{2}}{\sqrt{6 + x - 2 x^2}} \right)\text{ dx }\]
\[ = - \frac{3}{2}\int\frac{\left( - 4x + 1 \right)}{\sqrt{6 + x - 2 x^2}} \text{ dx }+ \frac{13}{2}\int\frac{1}{\sqrt{6 + x - 2 x^2}}\text{ dx }\]
\[\text{  Putting  6 + x - 2 x}^2 =\text{  t   in   the  Ist  integral}\]
\[ \Rightarrow \left( - 4x + 1 \right) \text{ dx } = dt\]
\[ \therefore \int\frac{\left( 6x + 5 \right)}{\sqrt{6 + x - 2 x^2}}\text{ dx }= - \frac{3}{2}\int\frac{1}{\sqrt{t}}dt + \frac{13}{2 \times \sqrt{2}}\int\frac{1}{\sqrt{3 + \frac{x}{2} - x^2}}\text{ dx }\]
\[ = - \frac{3}{2}\int t^{- \frac{1}{2}} \cdot dt + \frac{13}{2\sqrt{2}}\int\frac{1}{\sqrt{3 + \frac{x}{2} - x^2 - \left( \frac{1}{4} \right)^2 + \left( \frac{1}{4} \right)^2}}\text{ dx }\]
\[ = - \frac{3}{2}\int t^{- \frac{1}{2}} \cdot dt + \frac{13}{2\sqrt{2}}\int\frac{1}{\sqrt{3 + \frac{1}{16} - \left( x - \frac{1}{4} \right)^2}}\text{ dx }\]
\[ = - \frac{3}{2}\int t^{- \frac{1}{2}} \cdot dt + \frac{13}{2\sqrt{2}}\int\frac{1}{\sqrt{\left( \frac{7}{4} \right)^2 - \left( x - \frac{1}{4} \right)^2}}\text{ dx }\]
\[ = - 3 \left[ t^\frac{1}{2} \right] + \frac{13}{2\sqrt{2}} \times \sin^{- 1} \left( \frac{x - \frac{1}{4}}{\frac{7}{4}} \right) + C .............\left[ \because \int\frac{1}{\sqrt{a^2 - x^2}}dx = \sin^{- 1} \frac{x}{a} + C \right]\]
\[ = - 3 \sqrt{6 + x - 2 x^2} + \frac{13}{2\sqrt{2}} \times \sin^{- 1} \left( \frac{x - \frac{1}{4}}{\frac{7}{4}} \right) + C\]
\[ = - 3\sqrt{6 + x - 2 x^2} + \frac{13}{2\sqrt{2}} \sin^{- 1} \left( \frac{4x - 1}{7} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 75 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

` ∫   tan   x   sec^4  x   dx  `


\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x e^{2x} \text{ dx }\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int \tan^5 x\ dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int x \sec^2 2x\ dx\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×