हिंदी

∫ Cos X 1 − Cos X D X O R ∫ Cot X C O S E C X − Cot X D X - Mathematics

Advertisements
Advertisements

प्रश्न

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]
योग

उत्तर

\[\int\frac{\cot x}{\text{cosec x }- \cot x}dx\]
\[ = \int\frac{\frac{\cos x}{\sin x}}{\frac{1}{\sin x} - \frac{\cos x}{\sin x}}dx\]
\[ = \int\left( \frac{\cos x}{1 - \cos x} \right) \times \frac{\left( 1 + \cos x \right)}{\left( 1 + \cos x \right)}dx\]
\[ = \int\left( \frac{\cos x + \cos^2 x}{1 - \cos^2 x} \right)dx\]
\[ = \int\left( \frac{\cos x + \cos^2 x}{\sin^2 x} \right) dx\]
\[ = \int\left( \frac{\cos x}{\sin x} \times \frac{1}{\sin x} + \frac{\cos^2 x}{\sin^2 x} \right)dx\]
\[ = \int\left[ \left( \text{cot x cosec x} \right) + \cot^2 x \right]dx\]
\[ = \int\left[ \text{cosec x cot x }+ {cosec}^2 x - 1 \right]dx\]
\[ = -\text{ cosec x} - \cot x - x + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.02 | Q 27 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

`∫     cos ^4  2x   dx `


\[\int \cos^2 \frac{x}{2} dx\]

 


Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int x^3 \cos x^2 dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×