Advertisements
Advertisements
प्रश्न
\[\int\frac{\cos^7 x}{\sin x} dx\]
योग
उत्तर
\[\text{ Let I } = \int\frac{\cos^7 x}{\sin x}dx\]
\[ = \int\frac{\cos^6 x \cdot \cos x dx}{\sin x}\]
\[ = \int\frac{\left( \cos^2 x \right)^3 \cdot \cos x}{\sin x}dx\]
\[ = \int\frac{\left( 1 - \sin^2 x \right)^3 \cdot \cos x}{\sin x}dx\]
\[\text{ Let sin x} = t\]
\[ \Rightarrow \text{ cos x dx } = dt\]
\[ \therefore I = \int\frac{\left( 1 - t^2 \right)^3}{t}dt\]
\[ = \int\left( \frac{1 - t^6 - 3 t^2 + 3 t^4}{t} \right)\text{ dt }\]
\[ = \int\left( \frac{1}{t} - t^5 - 3t + 3 t^3 \right)\text{ dt}\]
\[ = \text{ ln }\left| t \right| - \frac{t^6}{6} - \frac{3 t^2}{2} + \frac{3 t^4}{4} + C\]
\[ = \text{ ln }\left| \sin x \right| - \frac{\sin^6 x}{6} - \frac{3 \sin^2 x}{2} + \frac{3}{4} \sin^4 x + C ...............\left( \because t = \sin x \right)\]
\[ = \int\frac{\cos^6 x \cdot \cos x dx}{\sin x}\]
\[ = \int\frac{\left( \cos^2 x \right)^3 \cdot \cos x}{\sin x}dx\]
\[ = \int\frac{\left( 1 - \sin^2 x \right)^3 \cdot \cos x}{\sin x}dx\]
\[\text{ Let sin x} = t\]
\[ \Rightarrow \text{ cos x dx } = dt\]
\[ \therefore I = \int\frac{\left( 1 - t^2 \right)^3}{t}dt\]
\[ = \int\left( \frac{1 - t^6 - 3 t^2 + 3 t^4}{t} \right)\text{ dt }\]
\[ = \int\left( \frac{1}{t} - t^5 - 3t + 3 t^3 \right)\text{ dt}\]
\[ = \text{ ln }\left| t \right| - \frac{t^6}{6} - \frac{3 t^2}{2} + \frac{3 t^4}{4} + C\]
\[ = \text{ ln }\left| \sin x \right| - \frac{\sin^6 x}{6} - \frac{3 \sin^2 x}{2} + \frac{3}{4} \sin^4 x + C ...............\left( \because t = \sin x \right)\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]
\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
\[\int\frac{x^3}{x - 2} dx\]
\[\int\text{sin mx }\text{cos nx dx m }\neq n\]
\[\int\frac{1 - \cot x}{1 + \cot x} dx\]
\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]
\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]
` ∫ tan^5 x dx `
\[\int \sin^5 x \cos x \text{ dx }\]
\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]
\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]
\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]
\[\int\frac{x}{\sqrt{4 - x^4}} dx\]
` ∫ \sqrt{"cosec x"- 1} dx `
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]
\[\int\frac{\log x}{x^n}\text{ dx }\]
\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]
\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]
\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]
\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]
\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]
\[\int\frac{1}{\sin x + \sin 2x} dx\]
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int\sqrt{3 x^2 + 4x + 1}\text{ dx }\]
\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]