हिंदी

∫ X 2 Tan − 1 X 1 + X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]
योग

उत्तर

\[\text{ Let I } = \int \left( \frac{x^2 \tan^{- 1} x}{1 + x^2} \right)dx\]
\[ = \int \left( \frac{x^2 + 1 - 1}{x^2 + 1} \right) \tan^{- 1} \text{ x dx }\]
\[ = \int \left( 1 - \frac{1}{x^2 + 1} \right) \tan^{- 1}\text{  x dx }\]
\[ = \int 1_{II} . \tan^{- 1}_I \text{ x dx } - \int \frac{\tan^{- 1} x}{x^2 + 1} \text{ dx}\]


\[ = \left[ \tan^{- 1} x\int1\text{ dx }- \int\left\{ \frac{d}{dx}\left( \tan^{- 1} x \right)\int1 \text{ dx } \right\} \text{ dx }\right] - \int \frac{\tan^{- 1} x}{x^2 + 1}dx\]
\[ = t\left[ {an}^{- 1} x \times x - \int\frac{x}{1 + x^2}dx \right] - \int\frac{\tan^{- 1} x}{x^2 + 1}dx\]
`  " Putting x"^2" + 1 = t in the first integral and tan"^{- 1}" x = p in the second integral " `
\[ \Rightarrow \text{ 2x dx }= dt \text{ and }\frac{1}{1 + x^2}dx = dp\]
\[ \Rightarrow \text{ x dx } = \frac{dt}{2} \text{ and }\frac{1}{1 + x^2}dx = dp\]
\[ \therefore I = \tan^{- 1} x . x - \frac{1}{2}\int \frac{dt}{t} - \int p . dp\]
\[ = x \tan^{- 1} x - \frac{1}{2}\text{ ln} \left| t \right| - \frac{p^2}{2} + C\]
\[ = x \tan^{- 1} x - \frac{1}{2}\text{ ln }\left| 1 + x^2 \right| - \frac{\left( \tan^{- 1} x \right)^2}{2} + C \left[ \because t = x^2 + 1 \text{ and } p = \tan^{- 1} x \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 40 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{1}{1 - \sin x} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int \cos^5 x \text{ dx }\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×