Advertisements
Advertisements
प्रश्न
\[\int\frac{1 + \cos x}{1 - \cos x} dx\]
योग
उत्तर
\[\int\left( \frac{1 + \cos x}{1 - \cos x} \right) dx\]
\[ = \int\left( \frac{2 \cos^2 \frac{x}{2}}{2 \sin^2 \frac{x}{2}} \right) dx \left[ \therefore 1 + \cos x = 2 \cos^2 \frac{x}{2} \text{and} 1 - \cos x = 2 \sin^2 \frac{x}{2} \right]\]
\[ = \int \cot^2 \frac{x}{2} dx\]
` = ∫ ( "cosec"^2 x/2 -1)` dx
\[ = \frac{- \cot \left( \frac{x}{2} \right)}{\frac{1}{2}} - x + C\]
\[ = - 2 \cot \left( \frac{x}{2} \right) - x + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
\[\int \text{sin}^2 \left( 2x + 5 \right) \text{dx}\]
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int\frac{1}{1 + \sqrt{x}} dx\]
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]
\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{ dx }\]
\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]
\[\int x^2 \cos 2x\ \text{ dx }\]
\[\int e^\sqrt{x} \text{ dx }\]
\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]
\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]
\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} dx\]
\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]
\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to
\[\int \text{cosec}^2 x \text{ cos}^2 \text{ 2x dx} \]
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
\[\int\sqrt{3 x^2 + 4x + 1}\text{ dx }\]
\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]
\[\int \tan^{- 1} \sqrt{x}\ dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]