हिंदी

∫ X + 2 2 X 2 + 6 X + 5 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]
योग

उत्तर

\[\int\left( \frac{x + 2}{2 x^2 + 6x + 5} \right)dx\]
\[x + 2 = A\frac{d}{dx}\left( 2 x^2 + 6x + 5 \right) + B\]
\[x + 2 = A \left( 4x + 6 \right) + B\]
\[x + 2 = \left( 4 A \right) x + 6 A + B\]

Comparing the Coefficients of like powers of x

\[\text{ 4 A }= 1\]
\[A = \frac{1}{4}\]
\[\text{ 6 A + B } = 2\]
\[6 \times \frac{1}{4} + B = 2\]
\[B = \frac{1}{2}\]

\[\therefore \int\left( \frac{x + 2}{2 x^2 + 6x + 5} \right)dx\]
\[ = \int\left[ \frac{\frac{1}{4}\left( 4x + 6 \right) + \frac{1}{2}}{2 x^2 + 6x + 5} \right]dx\]
\[ = \frac{1}{4}\int\frac{\left( 4x + 6 \right)}{2 x^2 + 6x + 5}dx + \frac{1}{2}\int\frac{1}{2 x^2 + 6x + 5}dx\]
\[ = \frac{1}{4}\int\frac{\left( 4x + 6 \right)}{2 x^2 + 6x + 5}dx + \frac{1}{4}\int\frac{dx}{x^2 + 3x + \frac{5}{2}}\]
\[ = \frac{1}{4}\int\frac{\left( 4x + 6 \right)}{2 x^2 + 6x + 5}dx + \frac{1}{4}\int\frac{dx}{x^2 + 3x + \left( \frac{3}{2} \right)^2 - \left( \frac{3}{2} \right)^2 + \frac{5}{2}}\]
\[ = \frac{1}{4}\int\frac{\left( 4x + 6 \right)}{2 x^2 + 6x + 5}dx + \frac{1}{4}\int\frac{dx}{\left( x + \frac{3}{2} \right)^2 - \frac{9}{4} + \frac{5}{2}}\]
\[ = \frac{1}{4}\int\frac{\left( 4x + 6 \right)}{2 x^2 + 6x + 5}dx + \frac{1}{4}\int\frac{dx}{\left( x + \frac{3}{2} \right)^2 + \frac{1}{4}}\]
\[ = \frac{1}{4}\int\frac{\left( 4x + 6 \right)}{2 x^2 + 6x + 5}dx + \frac{1}{4}\int\frac{dx}{\left( x + \frac{3}{2} \right)^2 + \left( \frac{1}{2} \right)^2}\]
\[ = \frac{1}{4} \text{  log }\left| 2 x^2 + 6x + 5 \right| + \frac{1}{4} \times 2 \text{ tan}^{- 1} \left( \frac{x + \frac{3}{2}}{\frac{1}{2}} \right) + C\]
\[ = \frac{1}{4} \text{ log }\left| 2 x^2 + 6x + 5 \right| + \frac{1}{2} \text{ tan}^{- 1} \left( 2x + 3 \right) + C\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.19 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.19 | Q 11 | पृष्ठ १०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int \log_{10} x\ dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×