Advertisements
Advertisements
प्रश्न
\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]
योग
उत्तर
\[\int \frac{\sec^2 \sqrt{x}}{\sqrt{x}}dx\]
\[\text{Let} \sqrt{x} = t\]
\[ \Rightarrow \frac{1}{2\sqrt{x}} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{dx}{\sqrt{x}} = 2dt\]
\[Now, \int \frac{\sec^2 \sqrt{x}}{\sqrt{x}}dx\]
\[ = 2\int \sec^2\text{ t dt}\]
\[ =\text{ 2 }\text{tan }\left( t \right) + C\]
\[ = \text{2 tan }\left( \sqrt{x} \right) + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]
Integrate the following integrals:
\[\int\text { sin x cos 2x sin 3x dx}\]
\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]
\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
\[\int\frac{x^2 - 1}{x^2 + 4} dx\]
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]
\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{1}{1 - \cot x} dx\]
\[\int\frac{1}{1 - \tan x} \text{ dx }\]
\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]
\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]
\[\int\sqrt{2x - x^2} \text{ dx}\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]
\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]
\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]
\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]
\[\int \tan^3 x\ dx\]
\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]
\[\int\frac{1}{a + b \tan x} \text{ dx }\]
\[\int \sec^4 x\ dx\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]