हिंदी

Integrate the Following Integrals: ∫ S I N X Cos 2 X Sin 3 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]
योग

उत्तर

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]
` = 1/2  ∫   ( 2  sin x  cos  2x)  sin 3x  dx` 
\[ = \frac{1}{2}\int\left[ \text{sin}\left( x + 2x \right) + \text{sin}\left( x - 2x \right) \right] \text{sin}\left( 3x \right) dx\]
\[ = \frac{1}{2}\int\left[ \text{sin}\left( 3x \right) - \text{sin}\left( x \right) \right] \text{sin}\left( 3x \right) dx\]
\[ = \frac{1}{2}\left[ \int \text{sin}^2 \left( 3x \right) dx - \int\text{sin}\left( x \right)\text{sin}\left( 3x \right) dx \right]\]
\[ = \frac{1}{4}\left[ \int2 \text{sin}^2 \left( 3x \right) dx - \int2\text{sin}\left( x \right)\text{sin}\left( 3x \right) dx \right]\]
\[ = \frac{1}{4}\left\{ \int\left[ 1 - \text{cos}\left( 6x \right) \right] dx - \int\left[ \text{cos}\left( x - 3x \right) - \text{cos}\left( x + 3x \right) \right] dx \right\}\]
\[ = \frac{1}{4}\left[ \int1 dx - \int\text{cos}\left( 6x \right) dx - \int\text{cos}\left( 2x \right) dx + \int\text{cos}\left( 4x \right) dx \right]\]
\[ = \frac{1}{4}\left[ x - \frac{\text{sin}\left( 6x \right)}{6} - \frac{\text{sin}\left( 2x \right)}{2} + \frac{\text{sin}\left( 4x \right)}{4} \right] + c\]
\[ = \frac{x}{4} - \frac{\text{sin}\left( 6x \right)}{24} - \frac{\text{sin}\left( 2x \right)}{8} + \frac{\text{sin}\left( 4x \right)}{16} + c\]

Hence, 

\[\int\text{ sin}\text{ x }\text{cos 2x   sin 3x}\ dx = \frac{x}{4} - \frac{\text{sin}\left( 6x \right)}{24} - \frac{\text{sin}\left( 2x \right)}{8} + \frac{\text{sin}\left( 4x \right)}{16} + c\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.07 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.07 | Q 6 | पृष्ठ ३८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


` ∫  1/ {1+ cos   3x}  ` dx


\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int x^2 \sin^2 x\ dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×