हिंदी

∫ E X 1 + X ( 2 + X ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]
योग

उत्तर

\[\text{ Let I } = \int e^x \left[ \frac{1 + x}{\left( 2 + x \right)^2} \right]dx\]

\[ = \int e^x \left( \frac{2 + x - 1}{\left( 2 + x \right)^2} \right)dx\]

\[ = \int e^x \left[ \frac{1}{\left( 2 + x \right)} - \frac{1}{\left( 2 + x \right)^2} \right]dx\]

\[\text{ Here, } f(x) = \frac{1}{2 + x}\]

\[ \Rightarrow f'(x) = \frac{- 1}{\left( 2 + x \right)^2}\]

\[\text{ Put e }^x f(x) = t\]

\[ \Rightarrow e^x \frac{1}{x + 2} = t\]

\[\text{ Diff  both  sides  w . r . t x}\]

\[ e^x \frac{1}{x + 2} + e^x \frac{- 1}{\left( x + 2 \right)^2} = \frac{dt}{dx}\]

\[ \Rightarrow e^x \left[ \frac{1}{x + 2} - \frac{1}{\left( x + 2 \right)^2} \right]dx = dt\]

\[ \therefore \int e^x \left[ \frac{1}{\left( 2 + x \right)} - \frac{1}{\left( 2 + x \right)^2} \right]dx = \int dt\]

\[ \Rightarrow I = t + C\]

\[ = \frac{e^x}{2 + x} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.26 [पृष्ठ १४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.26 | Q 13 | पृष्ठ १४३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int x e^{2x} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

 
` ∫  x tan ^2 x dx 

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×