हिंदी

∫ ( 4 X + 1 ) √ X 2 − X − 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]
योग

उत्तर

\[\text{ Let I } = \int \left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\text{ Also, }4x + 1 = \lambda\frac{d}{dx}\left( x^2 - x - 2 \right) + \mu\]

\[ \Rightarrow 4x + 1 = \lambda\left( 2x - 1 \right) + \mu\]

\[ \Rightarrow 4x + 1 = \left( 2\lambda \right)x + \mu - \lambda\]

\[\text{Equating coefficient of like terms}\]

\[2\lambda = 4\]

\[ \Rightarrow \lambda = 2\]

\[\text{ And }\]

\[\mu - \lambda = 1\]

\[ \Rightarrow \mu - 2 = 1\]

\[ \Rightarrow \mu = 3\]

\[ \therefore I = \int \left[ 2\left( 2x - 1 \right) + 3 \right] \sqrt{x^2 - x - 2} \text{  dx }\]

\[ = 2\int\left( 2x - 1 \right) \sqrt{x^2 - x - 2}dx + 3\int\sqrt{x^2 - x - 2}\text{  dx }\]

\[ = 2\int\left( 2x - 1 \right) \sqrt{x^2 - x - 2} \text{  dx }+ 3 \int \sqrt{x^2 - x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 - 2} \text{  dx }\]

\[ = 2 \int \left( 2x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }+ 3 \int \sqrt{\left( x - \frac{1}{2} \right)^2 - 2 - \frac{1}{4}} \text{  dx }\]

\[ = \int \left( 2x - 1 \right) \sqrt{x^2 - x - 2} \text{  dx }+ 3 \int\sqrt{\left( x - \frac{1}{2} \right)^2 - \left( \frac{3}{2} \right)^2} \text{  dx }\]

\[\text{ Let x}^2 - x - 2 = t\]

\[ \Rightarrow \left( 2x - 1 \right)dx = dt\]

\[ \therefore I = 2\int \sqrt{t} \text{ dt } + 3\left[ \left( \frac{x - \frac{1}{2}}{2} \right) \sqrt{\left( x - \frac{1}{2} \right)^2 - \left( \frac{3}{2} \right)^2} - \frac{\left( \frac{3}{2} \right)^2}{2}\text{ log }\left| \left( x - \frac{1}{2} \right) + \sqrt{x^2 - x - 2} \right| \right]\]

\[ = 2 \left[ \frac{t^\frac{3}{2}}{\frac{3}{2}} \right] + \frac{3}{4} \left( 2x - 1 \right) \sqrt{x^2 - x - 2} - \frac{27}{8}\text{ log } \left| \left( x - \frac{1}{2} \right) + \sqrt{x^2 - x - 2} \right| + C\]

\[ = \frac{4}{3} \left( x^2 - x - 2 \right)^\frac{3}{2} + \frac{3}{4} \left( 2x - 1 \right) \sqrt{x^2 - x - 2} - \frac{27}{8}\text{ log }\left| \left( x - \frac{1}{2} \right) + \sqrt{x^2 - x - 2} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.29 [पृष्ठ १५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.29 | Q 5 | पृष्ठ १५९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int \sin^2\text{ b x dx}\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int x \sin^3 x\ dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int \cot^4 x\ dx\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×