हिंदी

∫ √ cosec x − 1 dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]
योग

उत्तर

\[\text{ Let I }= \int\sqrt{\text{ cosec x} - 1} \text{ dx}\]

\[ = \int\sqrt{\frac{1}{\sin x} - 1} \text{ dx }\]

\[ = \int\frac{\sqrt{1 - \sin x}}{\sqrt{\sin x}} \text{ dx }\]

\[ = \int\frac{\sqrt{\left( 1 - \sin x \right) \left( 1 + \sin x \right)}}{\sqrt{\sin x \left( 1 + \sin x \right)}}\text{ dx }\]

\[ = \int\frac{\sqrt{1 - \sin^2 x}}{\sqrt{\sin^2 x + \sin x}}\text{ dx}\]

\[ = \int\frac{\cos x}{\sqrt{\sin^2 x + \sin x}}\text{ dx }\]

\[\text{ Putting sin x = t }\]

\[ \Rightarrow \text{ cos  x  dx  = dt}\]

\[ \therefore I = \int\frac{dt}{\sqrt{t^2 + t}}\]

\[ = \int\frac{dt}{\sqrt{t^2 + t + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}}\]

\[ = \int\frac{dt}{\sqrt{\left( t + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}}\]

\[ = \text{ ln }\left| t + \frac{1}{2} + \sqrt{\left( t + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2} \right| + C  ..............\left[ \because \int\frac{1}{\sqrt{x^2 - a^2}}dx = \text{ ln }\left| x + \sqrt{x^2 - a^2} \right| + C \right]\]

\[ = \text{ ln} \left| t + \frac{1}{2} + \sqrt{t^2 + t} \right| + C\]

\[ = \text{ ln }\left| \left( \sin x + \frac{1}{2} \right) + \sqrt{\sin^2 x + \sin x} \right| + C ............\left[ \because t = \sin x \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 49 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int \cot^5 x  \text{ dx }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int \tan^3 x\ dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×