हिंदी

∫ Cot X + Cot 3 X 1 + Cot 3 X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]
योग

उत्तर

\[\text{We have}, \]
\[I = \int\left( \frac{\cot x + \cot^3 x}{1 + \cot^3 x} \right) dx\]
\[ = \int\left[ \frac{\cot x \left( 1 + \cot^2 x \right)}{1 + \cot^3 x} \right]dx\]
\[ = \int\left( \frac{\cot x {cosec}^2 x}{1 + \cot^3 x} \right) dx\]
\[\text{Putting} \cot x = t\]
\[ \Rightarrow - \text{ cosec}^2 x\ dx = dt\]
\[ \Rightarrow \text{cosec}^2 x\ dx = - dt\]
\[ \therefore I = - \int\frac{\text{ t  dt}}{1 + t^3}\]
\[ = - \int\frac{\text{ t  dt}}{\left( 1 + t \right) \left( t^2 - t + 1 \right)}\]
\[\text{ Let  } \frac{t}{\left( 1 + t \right) \left( t^2 - t + 1 \right)} = \frac{A}{t + 1} + \frac{Bt + C}{t^2 - t + 1}\]
\[ \Rightarrow \frac{t}{\left( 1 + t \right) \left( t^2 - t + 1 \right)} = \frac{A \left( t^2 - t + 1 \right) + \left( Bt + C \right) \left( t + 1 \right)}{\left( t + 1 \right) \left( t^2 - t + 1 \right)}\]
\[ \Rightarrow t = A \left( t^2 - t + 1 \right) + B t^2 + Bt + Ct + C\]
\[ \Rightarrow t = \left( A + B \right) t^2 + \left( B + C - A \right) t + A + C\]
\[\text{Equating Coefficients of like terms}\]
\[A + B = 0 . . . . . \left( 1 \right)\]
\[B + C - A = 1 . . . . . \left( 2 \right)\]
\[A + C = 0 . . . . . \left( 3 \right)\]
\[\text{Solving} \left( 1 \right), \left( 2 \right) \text{and} \left( 3 \right), \text{we get}\]
\[A = - \frac{1}{3}\]
\[B = \frac{1}{3}\]
\[C = \frac{1}{3}\]
\[ \therefore \frac{t}{\left( 1 + t \right) \left( t^2 - t + 1 \right)} = - \frac{1}{3 \left( t + 1 \right)} + \frac{1}{3} \left( \frac{t + 1}{t^2 - t + 1} \right)\]
\[ \Rightarrow \frac{t}{\left( 1 + t \right) \left( t^2 - t + 1 \right)} = - \frac{1}{3 \left( t + 1 \right)} + \frac{1}{6} \left[ \frac{2t + 2}{t^2 - t + 1} \right]\]
\[ \Rightarrow \frac{t}{\left( 1 + t \right) \left( t^2 - t + 1 \right)} = - \frac{1}{3 \left( t + 1 \right)} + \frac{1}{6} \left[ \frac{2t - 1 + 3}{t^2 - t + 1} \right]\]
\[ \therefore I = - \left[ - \frac{1}{3}\int\frac{dt}{t + 1} + \frac{1}{6}\int\left( \frac{2t - 1}{t^2 - t + 1} \right) dt + \frac{1}{2}\int\frac{dt}{t^2 - t + 1} \right]\]
\[ = + \frac{1}{3}\int\frac{dt}{t + 1} - \frac{1}{6}\int\left( \frac{2t - 1}{t^2 - t + 1} \right) dt - \frac{1}{2}\int\frac{dt}{t^2 - t + \frac{1}{4} - \frac{1}{4} + 1}\]
\[ = \frac{1}{3}\int\frac{dt}{t + 1} - \frac{1}{6}\int\frac{\left( 2t - 1 \right) dt}{\left( t^2 - t + 1 \right)} - \frac{1}{2}\int\frac{dt}{\left( t - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[\text{ let t}^2 - t + 1 = p\]
\[ \Rightarrow \left( 2t - 1 \right) dt = dp\]
\[ \therefore I = \frac{1}{3}\int\frac{dt}{t + 1} - \frac{1}{6}\int\frac{dp}{p} - \frac{1}{2}\int\frac{dt}{\left( t - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[ = \frac{1}{3} \text{ log} \left| t + 1 \right| - \frac{1}{6} \text{ log} \left| p \right| - \frac{1}{2} \times \frac{2}{\sqrt{3}} \text{ tan}^{- 1} \left( \frac{t - \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) + C\]
\[ = \frac{1}{3} \text{ log }\left| t + 1 \right| - \frac{1}{6} \text{ log }\left| p \right| - \frac{1}{\sqrt{3}} \text{ tan}^{- 1} \left( \frac{2t - 1}{\sqrt{3}} \right) + C\]
\[ = \frac{1}{3} \text{ log }\left| \cot x + 1 \right| - \frac{1}{6} \text{ log }\left| \cot^2 x - \cot x + 1 \right| - \frac{1}{\sqrt{3}} \text{ tan}^{- 1} \left( \frac{\text{ 2 cot  x} - 1}{\sqrt{3}} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 130 | पृष्ठ २०५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int x \cos^2 x\ dx\]

\[\int2 x^3 e^{x^2} dx\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int \cot^4 x\ dx\]

\[\int \cot^5 x\ dx\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×