हिंदी

∫ 2 X 3 E X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int2 x^3 e^{x^2} dx\]
योग

उत्तर

\[\int2 x^3 \cdot e^{x^2} dx\]
\[ = \int x^2 \cdot \left( e^{x^2} \right) \cdot \text{ 2x dx }\]
`  \text{  Let }  x^2" = t `

\[ \Rightarrow \text{ 2x dx } = dt\]
\[ = \int t_I \cdot {e_{II}}^t dt\]
\[ = t \cdot e^t - \int1 \cdot e^t dt\]
\[ =  \text{ t   e}^t - e^t + C\]
\[ = \text{ x}^2   \text{ e}^{x^2} - e^{x^2} + C\]
\[ = e^{x^2} \left( x^2 - 1 \right) + C\]

 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 17 | पृष्ठ १३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

`∫     cos ^4  2x   dx `


` ∫   cos  3x   cos  4x` dx  

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

` ∫  tan^5 x   sec ^4 x   dx `

` ∫  sec^6   x  tan    x   dx `

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×