हिंदी

∫ Sin 2 X √ Cos 4 X − Sin 2 X + 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]
योग

उत्तर

\[\int\frac{\text{ sin }\left( 2 x \right) dx}{\sqrt{\cos^4 x - \sin^2 x + 2}}\]
` ⇒ ∫ {2 sin x cos x  dx}/{\sqrt{cos^4 x - \left( 1 - \cos^2 x \right) + 2}}`
\[ \Rightarrow \int\frac{2 \sin x \cos x}{\sqrt{\cos^4 x + \cos^2 x + 1}}\]
\[\text{ Let } \cos^2 x = t\]
\[ \Rightarrow 2 \cos x \times - \text{ sin x dx } = dt\]
\[\text{ sin } \left( 2x \right) dx = - dt\]
\[Now, \int\frac{\sin \left( 2 x \right) dx}{\sqrt{\cos^4 x - \sin^2 x + 2}}\]
\[ = \int\frac{- dt}{\sqrt{t^2 + t + 1}}\]
\[ = \int\frac{- dt}{\sqrt{t^2 + t + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 + 1}}\]
\[ = - \int\frac{dt}{\sqrt{\left( t + \frac{1}{2} \right)^2 + \frac{3}{4}}}\]
\[ = - \int\frac{dt}{\sqrt{\left( t + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}}\]
\[ = - \text{ log }\left| t + \frac{1}{2} + \sqrt{\left( t + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \right| + C\]
\[ = - \text{ log }\left| t + \frac{1}{2} + \sqrt{t^2 + t + 1} \right| + C\]
\[ = - \text{ log }\left| \cos^2 x + \frac{1}{2} + \sqrt{\cos^4 x + \cos^2 x + 1} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.18 [पृष्ठ ९९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.18 | Q 11 | पृष्ठ ९९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int x \cos^2 x\ dx\]

\[\int x^2 \sin^2 x\ dx\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int \sin^4 2x\ dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×