हिंदी

∫ 1 1 − 2 Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
योग

उत्तर

\[\text{ Let I }= \int \frac{1}{1 - 2 \sin x}   \text{ dx }\]
\[\text{  Putting }\ \sin x = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \Rightarrow I = \int\frac{1}{1 - 2 \times \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \int \frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{\left( 1 + \tan^2 \frac{x}{2} \right) - 4 \tan \left( \frac{x}{2} \right)}dx\]
\[ = \int \frac{\text{ sec}^2 \left( \frac{x}{2} \right)}{\tan^2 \left( \frac{x}{2} \right) - 4 \tan \left( \frac{x}{2} \right) + 1} dx\]
\[\text{  Let tan} \left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \text{ sec}^2 \left( \frac{x}{2} \right) \times \frac{1}{2}dx = dt\]
\[ \Rightarrow \text{ sec}^2 \left( \frac{x}{2} \right)dx = 2dt\]
\[ \therefore I = 2\int \frac{dt}{t^2 - 4t + 1}\]
\[ = 2\int \frac{dt}{t^2 - 4t + 4 - 4 + 1}\]
\[ = 2 \int \frac{dt}{\left( t - 2 \right)^2 - 3}\]


\[ = 2 \int \frac{dt}{\left( t - 2 \right)^2 - \left( \sqrt{3} \right)^2}\]
\[ = 2 \times \frac{1}{2\sqrt{3}}\text{ ln }\left| \frac{t - 2 - \sqrt{3}}{t - 2 + \sqrt{3}} \right| + C\]
\[ = \frac{1}{\sqrt{3}}\text{ ln} \left| \frac{\tan \left( \frac{x}{2} \right) - 2 - \sqrt{3}}{\tan \left( \frac{x}{2} \right) - 2 + \sqrt{3}} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.23 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.23 | Q 3 | पृष्ठ ११७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int \cos^2 \text{nx dx}\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int \cot^5 x\ dx\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int \sec^6 x\ dx\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×