मराठी

∫ 1 1 − 2 Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int \frac{1}{1 - 2 \sin x}   \text{ dx }\]
\[\text{  Putting }\ \sin x = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \Rightarrow I = \int\frac{1}{1 - 2 \times \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \int \frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{\left( 1 + \tan^2 \frac{x}{2} \right) - 4 \tan \left( \frac{x}{2} \right)}dx\]
\[ = \int \frac{\text{ sec}^2 \left( \frac{x}{2} \right)}{\tan^2 \left( \frac{x}{2} \right) - 4 \tan \left( \frac{x}{2} \right) + 1} dx\]
\[\text{  Let tan} \left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \text{ sec}^2 \left( \frac{x}{2} \right) \times \frac{1}{2}dx = dt\]
\[ \Rightarrow \text{ sec}^2 \left( \frac{x}{2} \right)dx = 2dt\]
\[ \therefore I = 2\int \frac{dt}{t^2 - 4t + 1}\]
\[ = 2\int \frac{dt}{t^2 - 4t + 4 - 4 + 1}\]
\[ = 2 \int \frac{dt}{\left( t - 2 \right)^2 - 3}\]


\[ = 2 \int \frac{dt}{\left( t - 2 \right)^2 - \left( \sqrt{3} \right)^2}\]
\[ = 2 \times \frac{1}{2\sqrt{3}}\text{ ln }\left| \frac{t - 2 - \sqrt{3}}{t - 2 + \sqrt{3}} \right| + C\]
\[ = \frac{1}{\sqrt{3}}\text{ ln} \left| \frac{\tan \left( \frac{x}{2} \right) - 2 - \sqrt{3}}{\tan \left( \frac{x}{2} \right) - 2 + \sqrt{3}} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.23 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.23 | Q 3 | पृष्ठ ११७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int \sec^4 2x \text{ dx }\]

\[\int \sin^5 x \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int \tan^4 x\ dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int x \sec^2 2x\ dx\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×