मराठी

∫ ( X 2 + 1 ) ( X 2 + 2 ) ( X 2 + 3 ) ( X 2 + 4 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 

बेरीज

उत्तर

We have,
\[I = \int \frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)}\]
\[\text{Putting }x^2 = t\]
Then,
\[\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} = \frac{\left( t + 1 \right) \left( t + 2 \right)}{\left( t + 3 \right) \left( t + 4 \right)} = \frac{t^2 + 3t + 2}{t^2 + 7t + 12}\]

Degree of numerator is equal to degree of denominator.

We divide numerator by denominator.

\[\therefore \frac{t^2 + 3t + 2}{t^2 + 7t + 12} = 1 - \left( \frac{4t + 10}{t^2 + 7t + 12} \right)\]
\[ \Rightarrow \frac{t^2 + 3t + 2}{t^2 + 7t + 12} = 1 - \frac{4t + 10}{\left( t + 3 \right) \left( t + 4 \right)} ............. \left( 1 \right)\]
\[\text{Let }\frac{4t + 10}{\left( t + 3 \right) \left( t + 4 \right)} = \frac{A}{t + 3} + \frac{B}{t + 4}\]
\[ \Rightarrow \frac{4t + 10}{\left( t + 3 \right) \left( t + 4 \right)} = \frac{A\left( t + 4 \right) + B\left( t + 3 \right)}{\left( t + 3 \right) \left( t + 4 \right)}\]
\[ \Rightarrow 4t + 10 = A\left( t + 4 \right) + B\left( t + 3 \right)\]
\[\text{Putting t + 4 = 0}\]
\[ \Rightarrow t = - 4\]
\[ \therefore - 16 + 10 = B\left( - 1 \right)\]
\[ \Rightarrow B = 6\]
\[\text{Putting t + 3 = 0}\]
\[ \Rightarrow t = - 3\]
\[ \therefore - 12 + 10 = A\left( - 3 + 4 \right)\]
\[ \Rightarrow A = - 2\]
\[ \therefore \frac{4t + 10}{\left( t + 3 \right) \left( t + 4 \right)} = \frac{- 2}{t + 3} + \frac{6}{t + 4} ................ \left( 2 \right)\]
From (1) and (2)
\[\frac{t^2 + 3t + 2}{t^2 + 7t + 12} = 1 + \frac{2}{t + 3} - \frac{6}{t + 4}\]
\[ \therefore \int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)dx}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} = \int dx + 2\int\frac{dx}{x^2 + \left( \sqrt{3} \right)^2} - 6\int\frac{dx}{x^2 + 2^2}\]
\[ = x + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) - \frac{6}{2} \tan^{- 1} \left( \frac{x}{2} \right) + C\]
\[ = x + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) - 3 \tan^{- 1} \left( \frac{x}{2} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 63 | पृष्ठ १७८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{1}{1 - \sin x} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int {cosec}^3 x\ dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×