Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]
बेरीज
उत्तर
\[\text{Let I} = \int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)}dx\]
\[\text{Putting}\ \sin^{- 1} x = t\]
\[ \Rightarrow \frac{1}{\sqrt{1 - x^2}} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{1}{\sqrt{1 - x^2}}dx = dt\]
\[ \therefore I = \int\frac{1}{2 + 3t}dt\]
\[ = \frac{1}{3} \text{ln }\left| 2 + 3t \right| + C\]
\[ = \frac{1}{3} \text{ln }\left| 2 + 3 \sin^{- 1} x \right| + C \left[ \because t = \sin^{- 1} x \right]\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^6 + 1}{x^2 + 1} dx\]
\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]
` ∫ cos mx cos nx dx `
\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]
\[\int \sec^4 2x \text{ dx }\]
\[\int\frac{e^x}{1 + e^{2x}} dx\]
\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]
\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
\[\int\frac{x}{x^2 + 3x + 2} dx\]
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int x^2 \tan^{- 1} x\text{ dx }\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]
\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
\[\int\left( x - 1 \right) e^{- x} dx\] is equal to
\[\int\frac{1}{1 - \cos x - \sin x} dx =\]
\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
\[\int \sin^4 2x\ dx\]
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
\[\int \cot^5 x\ dx\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]
\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]