मराठी

∫ X 2 − 3 X + 1 X 4 + X 2 + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]
बेरीज

उत्तर

\[\text{ We have,} \]
\[I = \int\left( \frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \right)dx\]
\[ = \int\frac{\left( x^2 + 1 \right)dx}{x^4 + x^2 + 1} - 3\int\frac{x \text{ dx}}{x^4 + x^2 + 1} . . . . . \left( 1 \right)\]
\[ = I_1 - 3 I_2 \text{ where I}_1 = \int\frac{\left( x^2 + 1 \right)dx}{x^4 + x^2 + 1}, I_2 = \int\frac{x dx}{x^4 + x^2 + 1}\]
\[ I_1 = \int\left( \frac{x^2 + 1}{x^4 + x^2 + 1} \right)dx\]
\[\text{Dividing numerator and denominator by} \text{ x}^2 \]
\[ I_1 = \int\frac{\left( 1 + \frac{1}{x^2} \right)dx}{x^2 + \frac{1}{x^2} + 1}\]
\[ = \int\frac{\left( 1 + \frac{1}{x^2} \right)dx}{x^2 + \frac{1}{x^2} - 2 + 3}\]
\[ = \int\frac{\left( 1 + \frac{1}{x^2} \right)dx}{\left( x - \frac{1}{x} \right)^2 + \left( \sqrt{3} \right)^2}\]
\[\text{ Let x} - \frac{1}{x} = t\]
\[ \Rightarrow \left( 1 + \frac{1}{x^2} \right)dx = dt\]
\[ \therefore I_1 = \int\frac{dt}{t^2 + \left( \sqrt{3} \right)^2}\]
\[ I_1 = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{t}{\sqrt{3}} \right) + C_1 \]
\[ I_1 = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{x - \frac{1}{x}}{\sqrt{3}} \right) + C_1 . . . . . \left( 2 \right)\]
\[ I_2 = \int\frac{x \text{ dx }}{x^4 + x^2 + 1}\]
\[\text{ Putting  x}^2 = t\]
\[ \Rightarrow 2x\text{ dx } = dt\]
\[ \Rightarrow x \text { dx }= \frac{dt}{2}\]
\[ \therefore I_2 = \frac{1}{2}\int\frac{dt}{t^2 + t + 1}\]
\[ = \frac{1}{2}\int\frac{dt}{t^2 + t + \frac{1}{4} + \frac{3}{4}}\]
\[ = \frac{1}{2}\int\frac{dt}{\left( t + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[ = \frac{1}{\frac{\sqrt{3}}{2}} \times \frac{1}{2}\left[ \tan^{- 1} \left( \frac{t + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) \right] + C_2 \]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{2t + 1}{\sqrt{3}} \right) + C_2 \]
\[ I_2 = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{2 x^2 + 1}{\sqrt{3}} \right) + C_2 . . . \left( 3 \right)\]
\[\text{ From  equating} \left( 1 \right), \left( 2 \right) \text{ and } \left( 3 \right) \text{ we have}\]
\[I = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{x - \frac{1}{x}}{\sqrt{3}} \right) + C_1 - 3 \times \left[ \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{2 x^2 + 1}{\sqrt{3}} \right) + C_2 \right]\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{x^2 - 1}{\sqrt{3}x} \right) - \sqrt{3} \tan^{- 1} \left( \frac{2 x^2 + 1}{\sqrt{3}} \right) + \text{ C where C = C}_1 + 3 C_2\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.31 [पृष्ठ १९०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.31 | Q 5 | पृष्ठ १९०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

` ∫  sec^6   x  tan    x   dx `

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int \cot^4 x\ dx\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×