मराठी

∫ X 3 X + 1 D X is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^3}{x + 1}dx\] is equal to

पर्याय

  • \[ x + \frac{x^2}{2} + \frac{x^3}{3} - \log\left| 1 - x \right| + C\]

  • \[ x + \frac{x^2}{2} - \frac{x^3}{3} - \log\left| 1 - x \right| + C\]

  • \[ x - \frac{x^2}{2} - \frac{x^3}{3} - \log\left| 1 + x \right| + C\]

  • \[ x - \frac{x^2}{2} + \frac{x^3}{3} - \log\left| 1 + x \right| + C\]

     

MCQ

उत्तर

\[ x - \frac{x^2}{2} + \frac{x^3}{3} - \log\left| 1 + x \right| + C\]

 

\[\text{Let }I = \int\frac{x^3}{x + 1}dx\]
\[ = \int\frac{x^3 + 1 - 1}{x + 1}dx\]
\[ = \int\left( \frac{x^3 + 1}{x + 1} - \frac{1}{x + 1} \right)dx\]
\[ = \int\left( \frac{\left( x + 1 \right)\left( x^2 - x + 1 \right)}{x + 1} - \frac{1}{x + 1} \right)dx\]
\[ = \int\left( x^2 - x + 1 - \frac{1}{x + 1} \right)dx\]
\[ = \left( \frac{x^3}{3} - \frac{x^2}{2} + x - \log\left| x + 1 \right| \right) + C\]
\[ = \frac{x^3}{3} - \frac{x^2}{2} + x - \log\left| x + 1 \right| + C\]
\[\text{Therefore, }\int\frac{x^3}{x + 1}dx = \frac{x^3}{3} - \frac{x^2}{2} + x - \log\left| x + 1 \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - MCQ [पृष्ठ २०२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
MCQ | Q 34 | पृष्ठ २०२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

` ∫   tan   x   sec^4  x   dx  `


` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×