मराठी

∫ 2 X − 3 ( X 2 − 1 ) ( 2 X + 3 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
बेरीज

उत्तर

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)}dx\]
\[ = \int\frac{\left( 2x - 3 \right)}{\left( x - 1 \right) \left( x + 1 \right) \left( 2x + 3 \right)}dx\]
\[\text{Let }\frac{2x - 3}{\left( x - 1 \right) \left( x + 1 \right) \left( 2x + 3 \right)} = \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{C}{2x + 3}\]
\[ \Rightarrow \frac{2x - 3}{\left( x - 1 \right) \left( x + 1 \right) \left( 2x + 3 \right)} = \frac{A \left( x + 1 \right) \left( 2x + 3 \right) + B \left( x + 1 \right) \left( 2x + 3 \right) + C \left( x^2 - 1 \right)}{\left( x - 1 \right) \left( x + 1 \right) \left( 2x + 3 \right)}\]
\[ \Rightarrow 2x - 3 = A \left( x + 1 \right) \left( 2x + 3 \right) + B \left( x - 1 \right) \left( 2x + 3 \right) + C \left( x + 1 \right) \left( x - 1 \right) ...........(1)\]
\[\text{Putting }x + 1 = 0\text{ or }x = - 1\text{ in eq. (1)}\]
\[ \Rightarrow - 2 - 3 = B \left( - 1 - 1 \right) \left( - 2 + 3 \right)\]
\[ \Rightarrow - 5 = B \left( - 2 \right) \left( 1 \right)\]
\[ \Rightarrow B = \frac{5}{2}\]
\[\text{Putting }x - 1 = 0\text{ or }x = 1\text{ in eq. (1)}\]
\[ \Rightarrow 2 - 3 = A \left( 1 + 1 \right) \left( 2 + 3 \right)\]
\[ \Rightarrow - 1 = A \left( 2 \right) \left( 5 \right)\]
\[ \Rightarrow A = \frac{- 1}{10}\]
\[\text{Putting }2x + 3 = 0\text{ or }x = \frac{- 3}{2}\text{ in eq. (1)}\]
\[ \Rightarrow 2 \times - \frac{3}{2} - 3 = A \times 0 + B \times 0 + C\left( - \frac{3}{2} + 1 \right) \left( \frac{- 3}{2} - 1 \right)\]
\[ \Rightarrow - 6 = C \left( - \frac{1}{2} \right) \left( \frac{- 5}{2} \right)\]
\[ \Rightarrow C = - \frac{24}{5}\]
\[ \therefore \frac{2x - 3}{\left( x - 1 \right) \left( x + 1 \right) \left( 2x + 3 \right)} = \frac{- 1}{10 \left( x - 1 \right)} + \frac{5}{2 \left( x + 1 \right)} - \frac{24}{5 \left( 2x + 3 \right)}\]
\[ \Rightarrow \int\frac{\left( 2x - 3 \right)}{\left( x - 1 \right) \left( x + 1 \right) \left( 2x + 3 \right)} dx = \frac{- 1}{10}\int\frac{1}{x - 1}dx + \frac{5}{2}\int\frac{1}{x + 1}dx - \frac{24}{5}\int\frac{1}{2x + 3}dx\]
\[ = \frac{- 1}{10} \ln \left| x - 1 \right| + \frac{5}{2} \ln \left| x + 1 \right| - \frac{24}{5} \ln \frac{\left| 2x + 3 \right|}{3} + C\]
\[ = - \frac{1}{10} \ln \left| x - 1 \right| + \frac{5}{2} \ln \left| x + 1 \right| - \frac{12}{5} \ln \left| 2x + 3 \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 9 | पृष्ठ १७६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{1 - \sin x}{x + \cos x} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int \sec^4 2x \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int \tan^4 x\ dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×