मराठी

∫ Tan 4 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \tan^4 x\ dx\]
बेरीज

उत्तर

\[\text{ Let I } = \int \text{ tan}^4 \text{ x dx }\]
\[ = \int \tan^2 x \cdot \tan^2 \text{ x dx}\]
\[ = \int\left( \sec^2 x - 1 \right) \tan^2 \text{ x  dx}\]
\[ = \int \sec^2 x \cdot \tan^2\text{  x dx }- \int \tan^2 \text{ x  dx}\]
\[ = \int \tan^2 x \cdot \sec^2 x - \int\left( \sec^2 x - 1 \right) dx\]
\[\text{ Putting tan x } = \text{ t  in   the  Ist  integral}\]
\[ \Rightarrow \sec^2 \text{ x  dx } = dt\]
\[ \therefore I = \int t^2 \cdot dt - \int\left( \sec^2 x - 1 \right) dx\]
\[ = \frac{t^3}{3} - \tan x + x + C\]
\[ = \frac{\tan^3 x}{3} - \text{ tan x + x + C }..............\left( \because t = \tan x \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 29 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int \cos^3 (3x)\ dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int \tan^{- 1} \sqrt{x}\ dx\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×