मराठी

∫ ( X + 1 ) √ 2 X 2 + 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]
बेरीज

उत्तर

\[\text{ Let I } = \int \left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]
\[\text{ Also, x} + 1 = \lambda\frac{d}{dx}\left( 2 x^2 + 3 \right) + \mu\]
\[ \Rightarrow x + 1 = \lambda\left( 4x \right) + \mu\]
\[\text{Equating coefficient of like terms}\]
\[4\lambda = 1\]
\[ \Rightarrow \lambda = \frac{1}{4} \text{ and }\mu = 1\]
\[ \therefore I = \int \left[ \frac{1}{4}\left( 4x \right) + 1 \right] \sqrt{2 x^2 + 3} \text{ dx}\]
\[ = \frac{1}{4}\int \left( 4x \right) \sqrt{2 x^2 + 3} \text{ dx}+ \int\sqrt{2 x^2 + 3} \text{ dx}\]
\[ = \frac{1}{4}\int\left( 4x \right)\sqrt{2 x^2 + 3}\text{ dx}+ \int\sqrt{2\left( x^2 + \frac{3}{2} \right)}\text{ dx}\]
\[ = \frac{1}{4}\int\left( 4x \right) \sqrt{2 x^2 + 3} \text{ dx}+ \sqrt{2} \int\sqrt{x^2 + \left( \frac{\sqrt{3}}{\sqrt{2}} \right)^2} \text{ dx}\]
\[\text{ Let 2 x}^2 + 3 = t\]
\[ \Rightarrow 4x \text{ dx}= dt\]
\[ \therefore I = \frac{1}{4}\int \sqrt{t}\text{  dt} + \sqrt{2}\left[ \frac{x}{2}\sqrt{x^2 + \frac{3}{2}} + \frac{3}{4}\text{ log }\left| x + \sqrt{x^2 + \frac{3}{2}} \right| \right]\]
\[ = \frac{1}{4}\left[ \frac{t^\frac{3}{2}}{\frac{3}{2}} \right] + \sqrt{2}\frac{x}{2}\frac{\sqrt{2 x^2 + 3}}{\sqrt{2}} + \frac{3\sqrt{2}}{4}\text{ log } \left| x + \frac{\sqrt{2 x^2 + 3}}{\sqrt{2}} \right| + C\]
\[ = \frac{1}{6} \left( 2 x^2 + 3 \right)^\frac{3}{2} + \frac{x}{2}\sqrt{2 x^2 + 3} + \frac{3\sqrt{2}}{4}\text{ log } \left| \frac{\sqrt{2}x + \sqrt{2 x^2 + 3}}{\sqrt{2}} \right| + C\]
\[ = \frac{1}{6} \left( 2 x^2 + 3 \right)^\frac{3}{2} + \frac{x}{2}\sqrt{2 x^2 + 3} + \frac{3\sqrt{2}}{4}\text{ log }\left| \sqrt{2}x + \sqrt{2 x^2 + 3} \right| - \frac{3\sqrt{2}}{4}\text{ log }\sqrt{2} + C\]
\[ = \frac{1}{6} \left( 2 x^2 + 3 \right)^\frac{3}{2} + \frac{x}{2}\sqrt{2 x^2 + 3} + \frac{3\sqrt{2}}{4}\text{ log }\left| \sqrt{2}x + \sqrt{2 x^2 + 3} \right| + C'\]
\[\text{ Where C' = C} - \frac{3\sqrt{2}}{4}\text{ log } \sqrt{2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.29 [पृष्ठ १५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.29 | Q 2 | पृष्ठ १५८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int \sec^4 2x \text{ dx }\]

\[\int \cot^6 x \text{ dx }\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×