मराठी

∫ 1 Sec X + C O S E C X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]
बेरीज

उत्तर

\[\text{We have}, \]
\[I = \int\frac{1}{\sec x + \text{ cosec x}} \text{ dx}\]
\[I = \int\frac{1}{\frac{1}{\cos x} + \frac{1}{\sin x}} \text{ dx}\]
\[I = \frac{1}{2}\int\frac{2\sin x \cos x}{\sin x + \cos x} \text{ dx}\]
\[I = \frac{1}{2}\int\frac{1 + 2\sin x \cos x - 1}{\sin x + \cos x} \text{ dx}\]
\[I = \frac{1}{2}\int\frac{\sin^2 x + \cos^2 x + 2\sin x \cos x - 1}{\sin x + \cos x} \text{ dx}\]
\[I = \frac{1}{2}\int\frac{\left( \sin x + \cos x \right)^2 - 1}{\sin x + \cos x} \text{ dx}\]
\[I = \frac{1}{2}\int\frac{\left( \sin x + \cos x \right)^2}{\sin x + \cos x} \text{ dx} - \frac{1}{2}\int\frac{1}{\sin x + \cos x} \text{ dx}\]
\[I = \frac{1}{2}\int\left( \sin x + \cos x \right) \text{ dx}- \frac{1}{2}\int\frac{1}{\sin x + \cos x} \text{ dx}\]
\[I = \frac{1}{2}\left( - \cos x + \sin x \right) + C_1 - \frac{1}{2\sqrt{2}}\int\frac{1}{\frac{1}{\sqrt{2}}\left( \sin x + \cos x \right)} \text{ dx}\]
\[I = \frac{1}{2}\left( - \cos x + \sin x \right) + C_1 - \frac{1}{2\sqrt{2}}\int\frac{1}{\sin x \cos\frac{\pi}{4} + \cos x \sin\frac{\pi}{4}} \text{ dx}\]
\[I = \frac{1}{2}\left( - \cos x + \sin x \right) + C_1 - \frac{1}{2\sqrt{2}}\int\frac{1}{\sin\left( x + \frac{\pi}{4} \right)} \text{ dx}\]
\[I = \frac{1}{2}\left( - \cos x + \sin x \right) + C_1 - \frac{1}{2\sqrt{2}}\int cosec\left( x + \frac{\pi}{4} \right) \text{ dx}\]
\[I = \frac{1}{2}\left( - \cos x + \sin x \right) - \frac{1}{2\sqrt{2}}\text{ log}\left| \tan\left( \frac{x}{2} + \frac{\pi}{8} \right) \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 83 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int x^2 \sin^{- 1} x\ dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×