मराठी

∫ 1 √ 8 + 3 X − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]
बेरीज

उत्तर

\[\int\frac{dx}{\sqrt{8 + 3x - x^2}}\]
\[ \Rightarrow \int\frac{dx}{\sqrt{8 - \left( x^2 - 3x \right)}}\]
\[ \Rightarrow \int\frac{dx}{\sqrt{8 - \left( x^2 - 3x + \left( \frac{3}{2} \right)^2 - \left( \frac{3}{2} \right)^2 \right)}}\]
\[ \Rightarrow \int\frac{dx}{\sqrt{8 - \left( x - \frac{3}{2} \right)^2 + \frac{9}{4}}}\]
\[ \Rightarrow \int\frac{dx}{\sqrt{\left( \frac{\sqrt{41}}{2} \right)^2 - \left( x - \frac{3}{2} \right)^2}}\]
\[ \Rightarrow \sin^{- 1} \left( \frac{x - \frac{3}{2}}{\frac{\sqrt{41}}{2}} \right) + C\]
\[ \Rightarrow \sin^{- 1} \left( \frac{2x - 3}{\sqrt{41}} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.17 [पृष्ठ ९३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.17 | Q 2 | पृष्ठ ९३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

` ∫      tan^5    x   dx `


\[\int\frac{1}{\sin x \cos^3 x} dx\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int \cot^4 x\ dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int \cos^5 x\ dx\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int \log_{10} x\ dx\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×