मराठी

∫ ( 3 Sin X − 2 ) Cos X 5 − Cos 2 X − 4 Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
बेरीज

उत्तर

` ∫   {( 3 sin x -2 ) cos x   dx}/{5 cos^2 x -4 sin x} `
` ∫   {( 3 sin x -2 ) cos x   dx}/{5 -(1 - sin^2)-4 sin x} `
` ∫   {( 3 sin x -2 ) cos x   dx}/{sin^2 x -4  sin x + 4}`

`\text{ Let sin x }= t`
\[ \Rightarrow \text{ cos x dx} = dt\]
\[\int\frac{\left( 3t - 2 \right) dt}{t^2 - 4t + 4}\]
\[3t - 2 = A\frac{d}{dx}\left( t^2 - 4t + 4 \right) + B\]
\[3t - 2 = A \left( 2t - 4 \right) + B\]
\[3t - 2 = \left( 2 A \right) t + B - 4 A\]

Comparing the Coefficients of like powers of t

\[\text{ 2 A }= 3\]
\[A = \frac{3}{2}\]
\[\text{ B - 4  A }= - 2\]
\[B - 4 \times \frac{3}{2} = - 2\]
\[B = - 2 + 6\]
\[B = 4\]

\[3t - 2 = \frac{3}{2} \left( 2t - 4 \right) + 4\]
\[ \therefore \int\frac{\left( 3t - 2 \right) dt}{t^2 - 4t + 4}\]
\[ = \int\left( \frac{\frac{3}{2}\left( 2t - 4 \right) + 4}{t^2 - 4t + 4} \right)dt\]
\[ = \frac{3}{2}\int\left( \frac{2t - 4}{t^2 - 4t + 4} \right)dt + 4\int\frac{dt}{t^2 - 4t + 4}\]
`  =  3/2    I_1 + 4      I_2  . . . ( 1 )`
 Where
\[ I_1 = \int\frac{\left( 2t - 4 \right) dt}{t^2 - 4t + 4}, I_2 = \int\frac{dt}{t^2 - 4t + 4}\]
\[ I_1 = \int\frac{\left( 2t - 4 \right) dt}{t^2 - 4t + 4}\]
\[\text{ Let t }^2 - 4t + 4 = p\]
\[ \Rightarrow \left( 2t - 4 \right) dt = dp\]
\[ I_1 = \int\frac{\left( 2t - 4 \right) dt}{t^2 - 4t + 4}\]
\[ = \int\frac{dp}{p}\]
\[ = \text{ log }\left| p \right| + C_1 \]
\[ = \text{ log }\left| t^2 - 4t + 4 \right| + C_1 . . . \left( 2 \right)\]
\[ I_2 = \int\frac{dt}{t^2 - 4t + 4}\]
\[ I_2 = \int\frac{dt}{\left( t - 2 \right)^2}\]
\[ I_2 = \int \left( t - 2 \right)^{- 2} dt\]
\[ I_2 = \frac{\left( t - 2 \right)^{- 2 + 1}}{- 2 + 1} + C_2 \]
\[ I_2 = \frac{- 1}{t - 2} + C_2 . . . \left( 3 \right)\]
\[\text{ from }\left( 1 \right), \left( 2 \right) \text{ and }\left( 3 \right)\]
` ∫   {( 3 sin x -2 ) cos x   dx}/{5 cos^2 x -4 sin x} `
\[ = \frac{3}{2} \text{ log } \left| t^2 - 4t + 4 \right| + 4 \times \frac{- 1}{t - 2} + C_1 + C_2 \]
\[ = \frac{3}{2} \text{ log }\left| \sin^2 x - 4 \sin x + 4 \right| + \frac{4}{2 - t} + C \left( \text{ Where C }= C_1 + C_2 \right)\]
\[ = \frac{3}{2}\text{ log }\left| \left( \sin x - 2 \right)^2 \right| + \frac{4}{2 - \sin x} + C\]
\[ = \frac{3}{2} \times 2 \text{ log }\left| \sin x - 2 \right| + \frac{4}{2 - \sin x} + C\]
\[ = 3 \text{ log }\left| 2 - \sin x \right| + \frac{4}{2 - \sin x} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.19 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.19 | Q 10 | पृष्ठ १०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{1}{1 - \cos x} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int \cot^4 x\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×