मराठी

∫ Sin 6 X Cos 8 X D X = - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

पर्याय

  •  tan 7x + C

  • \[\frac{\tan^7 x}{7} + C\]
  • \[\frac{\tan 7x}{7} + C\]
  • sec7 x + C

MCQ

उत्तर

\[\frac{\tan^7 x}{7} + C\]

\[\text{Let }I = \int\frac{\sin^6 x}{\cos^8 x}dx\]

\[ = \int\frac{\sin^6 x}{\cos^6 x} \times \frac{1}{\cos^2 x}dx\]

\[ = \int \tan^6 x \cdot \sec^2 x dx\]

\[\text{Putting }\tan x = t\]
\[ \Rightarrow \sec^2 x dx = dt\]
\[ \therefore I = \int t^6 \cdot dt\]
\[ = \frac{t^7}{7} + C\]
\[ = \frac{\tan^7 x}{7} + C ............\left( \because t = \tan x \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - MCQ [पृष्ठ २०१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
MCQ | Q 15 | पृष्ठ २०१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


` ∫   tan   x   sec^4  x   dx  `


\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×