Advertisements
Advertisements
प्रश्न
\[\int x e^{2x} \text{ dx }\]
बेरीज
उत्तर
\[\int x e^{2x} \text{ dx }\]
` "Taking x as the first function and e"^2x " as the second function ". `
\[ = x\int e^{2x} dx - \int\left\{ \frac{d}{dx}\left( x \right)\int e^{2x} dx \right\}dx\]
\[ = \frac{x e^{2x}}{2} - \int\left( \frac{e^{2x}}{2} \right)dx\]
\[ = \frac{x}{2} e^{2x} - \frac{e^{2x}}{4} + C\]
\[ = e^{2x} \left( \frac{x}{2} - \frac{1}{4} \right) + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^6 + 1}{x^2 + 1} dx\]
\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]
\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]
\[\int x^3 \cos x^4 dx\]
\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int \sin^5 x \text{ dx }\]
\[\int \cos^7 x \text{ dx } \]
Evaluate the following integrals:
\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
\[\int\frac{dx}{e^x + e^{- x}}\]
\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]
\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{1}{5 + 4 \cos x} dx\]
\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]
\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]
\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]
\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]
\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]
\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]
\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]
Write a value of
\[\int e^{3 \text{ log x}} x^4\text{ dx}\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int \tan^4 x\ dx\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\sqrt{3 x^2 + 4x + 1}\text{ dx }\]
\[\int \tan^{- 1} \sqrt{x}\ dx\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]