Advertisements
Advertisements
प्रश्न
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
बेरीज
उत्तर
\[I = \int\sqrt{x^2 - 2x}dx\]
\[\Rightarrow I = \int\sqrt{x^2 - 2x + 1 - 1}\text{ dx}\]
\[ \Rightarrow I = \int\sqrt{(x - 1 )^2 - 1^2}dx\]
\[ \because \int\sqrt{x^2 - a^2}dx = \frac{x}{2}\sqrt{x^2 - a^2} - \frac{a^2}{2}\text{ ln}\left( \left| x + \sqrt{x^2 - a^2} \right| \right) + c\]
\[ \therefore I = \frac{(x - 1)}{2}\sqrt{(x - 1 )^2 - 1} - \frac{1}{2}\text{ ln}\left| \left( x - 1 \right) + \sqrt{x^2 - 2x} \right| + c\]
\[ \Rightarrow I = \int\sqrt{(x - 1 )^2 - 1^2}dx\]
\[ \because \int\sqrt{x^2 - a^2}dx = \frac{x}{2}\sqrt{x^2 - a^2} - \frac{a^2}{2}\text{ ln}\left( \left| x + \sqrt{x^2 - a^2} \right| \right) + c\]
\[ \therefore I = \frac{(x - 1)}{2}\sqrt{(x - 1 )^2 - 1} - \frac{1}{2}\text{ ln}\left| \left( x - 1 \right) + \sqrt{x^2 - 2x} \right| + c\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]
\[\int\frac{\cos x}{1 + \cos x} dx\]
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
\[\int\frac{1 - \cot x}{1 + \cot x} dx\]
\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]
\[\int x^3 \sin x^4 dx\]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
` ∫ tan^5 x dx `
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
`int"x"^"n"."log" "x" "dx"`
\[\int \left( \log x \right)^2 \cdot x\ dx\]
\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]
\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]
\[\int e^x \left( \cos x - \sin x \right) dx\]
\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]
\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]
\[\int\frac{x^2 + 1}{x^2 - 1} dx\]
\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} dx\]
\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]
\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx}\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]