Let I Let I =∫xdxx2+6x+10 A x= A ddx(x2+6x+10)+Bx=A(2x+6)+Bx=(2A)x+6A+BEquating Coefficients of like termsEquating Coefficients of like terms2A=1A=126A+B=06×12+B=0B=−3I = ∫ x dxx2+6x+10=∫(12(2x+6)−3x2+6x+10)dx=12∫(2x+6)dxx2+6x+10−3∫dxx2+6x+32−32+10=12∫(2x+6)dxx2+6x+10−3∫dx(x+3)2+12 let x let x 2+6x+10=t⇒(2x+6)dx=dtI=12∫dtt−3∫dx(x+3)2+1 log =12×2t−3 log |x+3+(x+3)2+1|+C log =t−3 log |x+3+x2+6x+10|+C log =x2+6x+10−3 log |x+3+x2+6x+10|+C
∫ sinx 1-cos2x dx
dx ∫1x+x+1 dx
dx∫1sin4x+cos4x dx