मराठी

∫ X X 3 − 1 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{x^3 - 1} \text{ dx}\]
बेरीज

उत्तर

\[\text{We have}, \]
\[I = \int\frac{\text{ x dx}}{x^3 - 1}\]
\[ = \int\frac{\text{ x dx}}{\left( x - 1 \right) \left( x^2 + x + 1 \right)}\]
\[\text{ Let} \frac{x}{\left( x - 1 \right) \left( x^2 + x + 1 \right)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + x + 1}\]
\[ \Rightarrow \frac{x}{\left( x - 1 \right) \left( x^2 + x + 1 \right)} = \frac{A \left( x^2 + x + 1 \right) + \left( Bx + C \right) \left( x - 1 \right)}{\left( x - 1 \right) \left( x^2 + x + 1 \right)}\]
\[ \Rightarrow x = A \left( x^2 + x + 1 \right) + B x^2 - Bx + Cx - C\]
\[ \Rightarrow x = \left( A + B \right) x^2 + \left( A - B + C \right) x + A - C\]
\[\text{Equating Coefficient of like terms}\]
\[A + B = 0 . . . . . \left( 1 \right)\]
\[A - B + C = 1 . . . . . \left( 2 \right)\]
\[A - C = 0 . . . . . \left( 3 \right)\]
\[\text{Solving} \left( 1 \right), \left( 2 \right) \text{ and }\left( 3 \right), \text{we get}\]
\[A = \frac{1}{3}\]
\[B = - \frac{1}{3}\]
\[C = \frac{1}{3}\]
\[ \therefore \frac{x}{\left( x - 1 \right) \left( x^2 + x + 1 \right)} = \frac{1}{3 \left( x - 1 \right)} + \frac{- \frac{1}{3}x + \frac{1}{3}}{x^2 + x + 1}\]
\[ = \frac{1}{3 \left( x - 1 \right)} + \frac{1}{3} \left[ \frac{- x + 1}{x^2 + x + 1} \right]\]
\[ = \frac{1}{3 \left( x - 1 \right)} - \frac{1}{3} \left[ \frac{x - 1}{x^2 + x + 1} \right]\]
\[ = \frac{1}{3 \left( x - 1 \right)} - \frac{1}{6} \left[ \frac{2x - 2}{x^2 + x + 1} \right]\]
\[ = \frac{1}{3 \left( x - 1 \right)} - \frac{1}{6} \left[ \frac{2x + 1}{x^2 + x + 1} \right] - \frac{1}{6} \times \frac{- 3}{x^2 + x + 1}\]
\[ = \frac{1}{3 \left( x - 1 \right)} - \frac{1}{6} \left[ \frac{2x + 1}{x^2 + x + 1} \right] + \frac{1}{2} \times \frac{1}{x^2 + x + 1}\]
\[ \therefore I = \frac{1}{3}\int\frac{dx}{x - 1} - \frac{1}{6}\int\frac{\left( 2x + 1 \right) dx}{x^2 + x + 1} + \frac{1}{2}\int\frac{dx}{x^2 + x + \frac{1}{4} - \frac{1}{4} + 1}\]
\[\text{ Putting x}^2 + x + 1 = t\]
\[ \Rightarrow \left( 2x + 1 \right) dx = dt\]
\[ \therefore I = \frac{1}{3} \text{ log }\left| x - 1 \right| - \frac{1}{6} \text{ log} \left| t \right| + \frac{1}{2}\int\frac{dx}{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[ = \frac{1}{3} \text{ log} \left| x - 1 \right| - \frac{1}{6} \text{ log} \left| x^2 + x + 1 \right| + \frac{1}{2}\left[ \frac{2}{\sqrt{3}} \text{ tan}^{- 1} \left( \frac{x + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) \right] + C\]
\[ = \frac{1}{3} \text{ log } \left| x - 1 \right| - \frac{1}{6} \text{ log} \left| x^2 + x + 1 \right| + \frac{1}{\sqrt{3}} \text{ tan}^{- 1} \left( \frac{2x + 1}{\sqrt{3}} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 123 | पृष्ठ २०५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{1 - \sin x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \sin^5 x \text{ dx }\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×