Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]
बेरीज
उत्तर
\[\int\frac{1}{x^2 + 4x - 5}dx\]
\[ = \int\frac{1}{x^2 + 4x + 4 - 4 - 5}dx\]
\[ = \int\frac{1}{x^2 + 4x + 4 - 3^2}dx\]
\[ = \int\frac{1}{\left( x + 2 \right)^2 - 3^2}dx\]
\[ = \frac{1}{2 \times 3} \text{ ln} \left| \frac{x + 2 - 3}{x + 2 + 3} \right| + C ................. \left[ \because \int\frac{1}{x^2 - a^2}dx = \frac{1}{2a}\text{ ln }\left| \frac{x - a}{x + a} \right| + C \right]\]
\[ = \frac{1}{6} \text{ ln } \left| \frac{x - 1}{x + 5} \right| + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^6 + 1}{x^2 + 1} dx\]
\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]
\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]
\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]
`∫ cos ^4 2x dx `
` ∫ sin x \sqrt (1-cos 2x) dx `
\[\int\text{sin mx }\text{cos nx dx m }\neq n\]
\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]
\[\int\frac{1 - \cot x}{1 + \cot x} dx\]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
\[\int x^3 \cos x^4 dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]
\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]
\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]
\[\int\frac{1}{2 x^2 - x - 1} dx\]
\[\int\frac{1}{x^2 + 6x + 13} dx\]
\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]
\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]
\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]
\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
\[\int \sec^2 x \cos^2 2x \text{ dx }\]
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]
\[\int \cot^5 x\ dx\]
\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]
\[\int \sin^{- 1} \sqrt{x}\ dx\]