Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
बेरीज
उत्तर
\[\text{ Let I }= \int\frac{dx}{4 x^2 + 4x + 1 + 4}\]
\[ = \int\frac{dx}{\left( 2x \right)^2 + 2 \times 2x + 1 + 22}\]
\[ = \int\frac{dx}{\left( 2x + 1 \right)^2 + 2^2}\]
\[\text{ Putting }\left( 2x + 1 \right) = t\]
\[ \Rightarrow 2 \text{ dx = dt }\]
\[ \Rightarrow dx = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{dt}{t^2 + 2^2}\]
\[ = \frac{1}{2} \times \frac{1}{2} \text{ tan}^{- 1} \left( \frac{t}{2} \right) + C\]
\[ = \frac{1}{4} \text{ tan}^{- 1} \left( \frac{2x + 1}{2} \right) + C ....................\left[ \because t = \left( 2x + 1 \right) \right]\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
\[\int \left( \tan x + \cot x \right)^2 dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]
\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]
\[\int\frac{x + 1}{x^2 + x + 3} dx\]
\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]
`int 1/(cos x - sin x)dx`
\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]
\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]
\[\int x^3 \tan^{- 1}\text{ x dx }\]
\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
\[\int\sqrt{2x - x^2} \text{ dx}\]
\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]
\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]
\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to
\[\int \sin^4 2x\ dx\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int \tan^{- 1} \sqrt{x}\ dx\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`