मराठी

∫ 1 X Log X ( 2 + Log X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]
बेरीज

उत्तर

We have,

\[I = \int\frac{dx}{x \log x\left( 2 + \log x \right)}\]

Putting log x = t

\[ \Rightarrow \frac{1}{x} dx = dt\]

\[ \therefore I = \int\frac{dt}{t \left( t + 2 \right)}\]

\[\text{Let }\frac{1}{t \left( t + 2 \right)} = \frac{A}{t} + \frac{B}{t + 2}\]

\[ \Rightarrow \frac{1}{t \left( t + 2 \right)} = \frac{A\left( t + 2 \right) + Bt}{t \left( t + 2 \right)}\]

\[ \Rightarrow 1 = A \left( t + 2 \right) + Bt\]

Putting t + 2 = 0

\[ \Rightarrow t = - 2\]

\[1 = A \times 0 + B \left( - 2 \right)\]

\[ \Rightarrow B = - \frac{1}{2}\]

Putting t = 0

\[1 = A \left( 0 + 2 \right) + B \times 0\]

\[ \Rightarrow A = \frac{1}{2}\]

Then,

\[I = \frac{1}{2}\int\frac{dt}{t} - \frac{1}{2}\int\frac{dt}{t + 2}\]

\[ = \frac{1}{2} \left[ \log \left| t \right| - \log \left| t + 2 \right| \right] + C\]

\[ = \frac{1}{2} \log \left| \frac{t}{t + 2} \right| + C\]

\[ = \frac{1}{2} \log \left| \frac{\log x}{\log x + 2} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 13 | पृष्ठ १७६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{1}{1 - \sin x} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int \cot^5 x  \text{ dx }\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int \log_{10} x\ dx\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×