मराठी

∫ X 2 + X + 1 X 2 − X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]
बेरीज

उत्तर

\[\int\left( \frac{x^2 + x + 1}{x^2 - x} \right)dx\]
\[\frac{x^2 + x + 1}{x^2 - x} = 1 + \frac{2x + 1}{x^2 - x}\]
\[ \therefore \int\left( \frac{x^2 + x + 1}{x^2 - x} \right)dx\]
\[ = \int\left( 1 + \frac{2x + 1}{x^2 - x} \right)dx\]
\[ = \int1 + \left( \frac{2x - 1 + 2}{x^2 - x} \right)dx\]
 ` =  ∫   dx + ∫   {(2x -1 ) dx }/ {x^2 -x } +  ∫  { 2  dx } / { x^2 - x + (1/2)^2 - (1/2) ^2} `
\[ = ∫ dx + \int\frac{\left( 2x - 1 \right) dx}{x^2 - x} + 2\int\frac{dx}{\left( x - \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}\]
\[ = x + \text{ log } \left| x^2 - x \right| + 2 \times \frac{1}{2 \times \frac{1}{2}}\text{ log }\left| \frac{x - \frac{1}{2} - \frac{1}{2}}{x - \frac{1}{2} + \frac{1}{2}} \right|\]
\[ = x + \text{ log } \left| x^2 - x \right| + 2 \text{  log } \left| \frac{x - 1}{x} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.2 [पृष्ठ १०६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.2 | Q 1 | पृष्ठ १०६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int x e^{2x} \text{ dx }\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×