Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\left( \frac{x^2 + x + 1}{x^2 - x} \right)dx\]
\[\frac{x^2 + x + 1}{x^2 - x} = 1 + \frac{2x + 1}{x^2 - x}\]
\[ \therefore \int\left( \frac{x^2 + x + 1}{x^2 - x} \right)dx\]
\[ = \int\left( 1 + \frac{2x + 1}{x^2 - x} \right)dx\]
\[ = \int1 + \left( \frac{2x - 1 + 2}{x^2 - x} \right)dx\]
` = ∫ dx + ∫ {(2x -1 ) dx }/ {x^2 -x } + ∫ { 2 dx } / { x^2 - x + (1/2)^2 - (1/2) ^2} `
\[ = ∫ dx + \int\frac{\left( 2x - 1 \right) dx}{x^2 - x} + 2\int\frac{dx}{\left( x - \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}\]
\[ = x + \text{ log } \left| x^2 - x \right| + 2 \times \frac{1}{2 \times \frac{1}{2}}\text{ log }\left| \frac{x - \frac{1}{2} - \frac{1}{2}}{x - \frac{1}{2} + \frac{1}{2}} \right|\]
\[ = x + \text{ log } \left| x^2 - x \right| + 2 \text{ log } \left| \frac{x - 1}{x} \right| + C\]
APPEARS IN
संबंधित प्रश्न
Write a value of
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]