Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
बेरीज
उत्तर
\[\text{ We have, } \]
\[I = \int \frac{dx}{\left( x - 1 \right) \sqrt{x + 2}}\]
\[\text{ Putting x} + 2 = t^2 \]
\[ \Rightarrow dx = 2t \text{ dt}\]
\[ \therefore I = \int\frac{2t \text{ dt}}{\left( t^2 - 2 - 1 \right)t}\]
\[ = \int \frac{2 \text{ dt }}{t^2 - \left( \sqrt{3} \right)^2}\]
\[ = 2 \times \frac{1}{2\sqrt{3}}\text{ log }\left| \frac{t - \sqrt{3}}{t + \sqrt{3}} \right| + C\]
\[ = \frac{1}{\sqrt{3}}\text{ log }\left| \frac{\sqrt{x + 2} - \sqrt{3}}{\sqrt{x + 2} + \sqrt{3}} \right| + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left( x^e + e^x + e^e \right) dx\]
\[\int\frac{\cos x}{1 + \cos x} dx\]
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]
` ∫ cos mx cos nx dx `
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
\[\int\frac{a}{b + c e^x} dx\]
\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]
\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]
\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]
\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]
\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]
\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]
\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]
\[\int x^2 \cos 2x\ \text{ dx }\]
\[\int x^3 \cos x^2 dx\]
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]
\[\int\sqrt{3 - x^2} \text{ dx}\]
\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{ dx }\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]
\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]
\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int\frac{1}{7 + 5 \cos x} dx =\]
\[\int\frac{x^3}{x + 1}dx\] is equal to
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]
\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]
\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{ dx }\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]
\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]