मराठी

∫ 1 X ( X 4 + 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]
बेरीज

उत्तर

We have,
\[I = \int \frac{dx}{x\left( x^4 + 1 \right)}\]
\[ = \int\frac{x^3 dx}{x^4 \left( x^4 + 1 \right)}\]
\[\text{Putting} x^4 = t\]
\[ \Rightarrow 4 x^3 dx = dt\]
\[ \Rightarrow x^3 dx = \frac{dt}{4}\]
\[ \therefore I = \frac{1}{4}\int\frac{dt}{t\left( t + 1 \right)}\]
\[\text{Let }\frac{1}{t\left( t + 1 \right)} = \frac{A}{t} + \frac{B}{t + 1}\]
\[ \Rightarrow \frac{1}{t\left( t + 1 \right)} = \frac{A\left( t + 1 \right) + Bt}{t\left( t + 1 \right)}\]
\[ \Rightarrow 1 = A\left( t + 1 \right) + Bt\]
\[\text{Putting }t + 1 = 0\]
\[ \Rightarrow t = - 1\]
\[ \therefore 1 = A \times 0 + B\left( - 1 \right)\]
\[ \Rightarrow B = - 1\]
\[\text{Putting }t = 0\]
\[ \therefore 1 = A\left( 1 \right) + B \times 0\]
\[ \Rightarrow A = 1\]
\[ \therefore I = \frac{1}{4}\int\frac{dt}{t} - \frac{1}{4}\int\frac{dt}{t + 1}\]
\[ = \frac{1}{4}\log \left| t \right| - \frac{1}{4}\log \left| t + 1 \right| + C\]
\[ = \frac{1}{4}\log \left| \frac{t}{t + 1} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 46 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1}{1 - \sin x} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x^2 \text{ cos x dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×