Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[I = \int \frac{dx}{x\left( x^4 + 1 \right)}\]
\[ = \int\frac{x^3 dx}{x^4 \left( x^4 + 1 \right)}\]
\[\text{Putting} x^4 = t\]
\[ \Rightarrow 4 x^3 dx = dt\]
\[ \Rightarrow x^3 dx = \frac{dt}{4}\]
\[ \therefore I = \frac{1}{4}\int\frac{dt}{t\left( t + 1 \right)}\]
\[\text{Let }\frac{1}{t\left( t + 1 \right)} = \frac{A}{t} + \frac{B}{t + 1}\]
\[ \Rightarrow \frac{1}{t\left( t + 1 \right)} = \frac{A\left( t + 1 \right) + Bt}{t\left( t + 1 \right)}\]
\[ \Rightarrow 1 = A\left( t + 1 \right) + Bt\]
\[\text{Putting }t + 1 = 0\]
\[ \Rightarrow t = - 1\]
\[ \therefore 1 = A \times 0 + B\left( - 1 \right)\]
\[ \Rightarrow B = - 1\]
\[\text{Putting }t = 0\]
\[ \therefore 1 = A\left( 1 \right) + B \times 0\]
\[ \Rightarrow A = 1\]
\[ \therefore I = \frac{1}{4}\int\frac{dt}{t} - \frac{1}{4}\int\frac{dt}{t + 1}\]
\[ = \frac{1}{4}\log \left| t \right| - \frac{1}{4}\log \left| t + 1 \right| + C\]
\[ = \frac{1}{4}\log \left| \frac{t}{t + 1} \right| + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]