मराठी

∫ Cos 2 X − Sin 2 X √ 1 + Cos 4 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]
बेरीज

उत्तर

\[\int \left( \frac{\cos^2 x - \sin^2 x}{\sqrt{1 + \cos 4x}} \right)dx\]

`= ∫(\text{ cos   ( 2x )} ) / sqrt{2 cos^2 ( 2x ) }  dx          [ ∴ 1 + cos A = 2 cos^2 (A / 2) &    cos^2 A - sin^2 A = cos  2A ]`
\[ = \frac{1}{\sqrt{2}}\int\left( \frac{\cos 2x}{\cos 2x} \right)dx\]
\[ = \frac{1}{\sqrt{2}}\left[ x \right] + C\]
\[ = \frac{x}{\sqrt{2}} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.02 | Q 28 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int x^3 \tan^{- 1}\text{  x dx }\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×