Advertisements
Advertisements
प्रश्न
\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]
बेरीज
उत्तर
\[\int \left( \frac{\cos^2 x - \sin^2 x}{\sqrt{1 + \cos 4x}} \right)dx\]
`= ∫(\text{ cos ( 2x )} ) / sqrt{2 cos^2 ( 2x ) } dx [ ∴ 1 + cos A = 2 cos^2 (A / 2) & cos^2 A - sin^2 A = cos 2A ]`
\[ = \frac{1}{\sqrt{2}}\int\left( \frac{\cos 2x}{\cos 2x} \right)dx\]
\[ = \frac{1}{\sqrt{2}}\left[ x \right] + C\]
\[ = \frac{x}{\sqrt{2}} + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int\left( \sec^2 x + {cosec}^2 x \right) dx\]
\[\int\frac{1}{1 - \cos x} dx\]
\[\int\frac{1 + \cos x}{1 - \cos x} dx\]
\[\int\frac{x^3}{x - 2} dx\]
\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]
\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\]
\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
` ∫ \sqrt{tan x} sec^4 x dx `
\[\int\frac{1}{\sin x \cos^3 x} dx\]
\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]
\[\int\frac{1}{1 + x - x^2} \text{ dx }\]
\[\int\frac{1}{2 x^2 - x - 1} dx\]
` ∫ { x^2 dx}/{x^6 - a^6} dx `
\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]
\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
` ∫ sin x log (\text{ cos x ) } dx `
\[\int x^3 \tan^{- 1}\text{ x dx }\]
∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]
\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]
\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]
\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .