Advertisements
Advertisements
प्रश्न
\[\int\frac{x^3}{x - 2} dx\]
बेरीज
उत्तर
\[\int\left( \frac{x^3}{x - 2} \right)dx\]
\[ = \int\left( \frac{x^3 - 8 + 8}{x - 2} \right)dx\]
\[ = \int\left[ \frac{\left( x^3 - 2^3 \right)}{\left( x - 2 \right)} + \frac{8}{x - 2} \right]dx\]
\[ = \int\left[ \frac{\left( x - 2 \right)\left( x^2 + 2x + 4 \right)}{\left( x - 2 \right)} + \frac{8}{x - 2} \right]dx\]
\[ = \int\left( x^2 + 2x + 4 \right)dx + 8\int\frac{dx}{x - 2}\]
\[ = \frac{x^3}{3} + \frac{2 x^2}{2} + 4x + \text{8 ln} \left| x - 2 \right| + C\]
\[ = \frac{x^3}{3} + x^2 + 4x + \text{8 ln }\left| x - 2 \right| + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\]
` ∫ {"cosec" x }/ { log tan x/2 ` dx
` ∫ tan 2x tan 3x tan 5x dx `
\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int\frac{1}{a^2 - b^2 x^2} dx\]
\[\int\frac{1}{a^2 x^2 + b^2} dx\]
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
\[\int\frac{x}{x^2 + 3x + 2} dx\]
\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx }\]
\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{1 - x^4}dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
Write a value of
\[\int e^{3 \text{ log x}} x^4\text{ dx}\]
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]
\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
\[\int \tan^4 x\ dx\]
\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]