मराठी

∫ sin x + cos x sin 4 x + cos 4 x dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
बेरीज

उत्तर

\[\text{We have}, \]
\[I = \int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[ = \int\frac{\sin x + \cos x}{\left( \sin^2 x + \cos^2 x \right)^2 - 2 \sin^2 x \cos^2 x} \text{ dx }\]
\[ = \int\frac{\sin x + \cos x}{1 - 2 \sin^2 x \cos^2 x} \text{ dx }\]
\[ = \int\frac{\sin x + \cos x}{1 - \frac{1}{2} \left( 2\sin x \cos x \right)^2} \text{ dx }\]
\[ = \int\frac{\sin x + \cos x}{1 - \frac{1}{2} \sin^2 2x}\text{ dx }\]

\[\text{ Putting  sin x - cos x = t} . . . . . \left( 1 \right)\]
\[ \Rightarrow \left( \sin x - \cos x \right)^2 = t^2 \]
\[ \Rightarrow \sin^2 x + \cos^2 x - 2\sin x \cos x = t^2 \]
\[ \Rightarrow 1 - 2\sin x \cos x = t^2 \]
\[ \Rightarrow \sin 2x = 1 - t^2 \]
\[\text{Differentiating} \left( 1 \right), \text{we get}\]
\[\left( \cos x + \sin x \right)dx = \text{ dt }\]
\[ \therefore I = \int\frac{1}{1 - \frac{1}{2} \left( 1 - t^2 \right)^2}\text{  dt }\]
\[ = \int\frac{2}{2 - \left( 1 - t^2 \right)^2} \text{ dt }\]
\[ = \int\frac{2}{\left( \sqrt{2} \right)^2 - \left( 1 - t^2 \right)^2} \text{ dt }\]
\[ = 2\int\frac{1}{\left( \sqrt{2} + 1 - t^2 \right)\left( \sqrt{2} - 1 + t^2 \right)} \text{ dt}\]

\[= \frac{2}{2\sqrt{2}}\int\left[ \frac{1}{\sqrt{2} + 1 - t^2} + \frac{1}{\sqrt{2} - 1 + t^2} \right]\text{ dt}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{1}{\sqrt{2} + 1 - t^2} \text{ dt}+ \frac{1}{\sqrt{2}}\int\frac{1}{\sqrt{2} - 1 + t^2} \text{ dt}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{1}{\left( \sqrt{\sqrt{2} + 1} \right)^2 - t^2} \text{ dt}+ \frac{1}{\sqrt{2}}\int\frac{1}{\left( \sqrt{\sqrt{2} - 1} \right)^2 + t^2} \text{ dt}\]
\[ = \frac{1}{\sqrt{2}} \times \frac{1}{2\sqrt{\sqrt{2} + 1}}\text{ log }\left| \frac{\sqrt{\sqrt{2} + 1} + t}{\sqrt{\sqrt{2} + 1} - t} \right| + \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{\sqrt{2} + 1}} \tan^{- 1} \frac{t}{\sqrt{\sqrt{2} + 1}} + C\]
\[ = \frac{1}{\sqrt{2}}\left[ \frac{1}{2\sqrt{\sqrt{2} + 1}}\text{ log }\left| \frac{\sqrt{\sqrt{2} + 1} + t}{\sqrt{\sqrt{2} + 1} - t} \right| + \frac{1}{\sqrt{\sqrt{2} + 1}} \tan^{- 1} \frac{t}{\sqrt{\sqrt{2} + 1}} \right] + C, \text{ where t = sin x - cos x}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 107 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


` ∫  tan^5 x   sec ^4 x   dx `

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×