Advertisements
Advertisements
प्रश्न
\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]
बेरीज
उत्तर
\[\text{ Let I }= \int e^x \left[ \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \right]dx\]
\[ = \int e^x \left[ \sin^{- 1} x + \frac{1}{\sqrt{1 - x^2}} \right]dx\]
\[\text{ Here}
, f(x) = \sin^{- 1} x\]
\[ \Rightarrow f'(x) = \frac{1}{\sqrt{1 - x^2}}\]
\[\text{ Put e}^x f(x) = t\]
\[ \Rightarrow e^x \sin^{- 1} x = t\]
\[\text{ Diff both sides w . r . t x}\]
\[\left( e^x \sin^{- 1} x + e^x \times \frac{1}{\sqrt{1 - x^2}} \right)dx = dt\]
\[ \therefore I = \int dt\]
\[ = t + C\]
\[ = e^x \sin^{- 1} x + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int \sin^2 \frac{x}{2} dx\]
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int x^3 \cos x^4 dx\]
\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]
\[\int\frac{e^{2x}}{1 + e^x} dx\]
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
\[\int \cot^5 x \text{ dx }\]
\[\int \cos^7 x \text{ dx } \]
\[\int \sin^3 x \cos^5 x \text{ dx }\]
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]
\[\int\frac{1}{4 + 3 \tan x} dx\]
\[\int x^2 \cos 2x\ \text{ dx }\]
\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]
\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]
\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]
\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]
\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]