मराठी

∫ 1 3 x 2 + 13 x − 10 dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]
बेरीज

उत्तर

\[\int\frac{1}{3 x^2 + 13x - 10}dx\]
\[ = \frac{1}{3}\int\frac{1}{x^2 + \frac{13}{3}x - \frac{10}{3}}dx\]
\[ = \frac{1}{3}\int\frac{1}{x^2 + \frac{13 x}{3} + \left( \frac{13}{6} \right)^2 - \left( \frac{13}{6} \right)^2 - \frac{10}{3}}dx\]
\[ = \frac{1}{3}\int\frac{1}{\left( x + \frac{13}{6} \right)^2 - \frac{169}{36} - \frac{10}{3}}dx\]
\[ = \frac{1}{3}\int\frac{1}{\left( x + \frac{13}{6} \right)^2 - \frac{169 - 120}{36}}dx\]
\[ = \frac{1}{3}\int\frac{1}{\left( x + \frac{13}{6} \right)^2 - \left( \frac{17}{6} \right)^2}dx\]
\[ = \frac{1}{3} \times \frac{1}{2 \times \frac{17}{6}} \text{ ln } \left| \frac{x + \frac{13}{6} - \frac{17}{6}}{x + \frac{13}{6} + \frac{17}{6}} \right|  .............\left[ \because \int\frac{1}{x^2 - a^2}dx = \frac{1}{2a}\text{ ln }\left| \frac{x - a}{x + a} \right| + C \right]\]
\[ = \frac{1}{17} \text{ ln}\left| \frac{x - \frac{2}{3}}{x + 5} \right| + C\]
\[ = \frac{1}{17} \text{ ln }\left| \frac{3x - 2}{3x + 15} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 47 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int \sin^7 x  \text{ dx }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int \tan^3 x\ dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×